Moduli of sheaves, Fourier–Mukai transform, and partial desingularization

被引:0
|
作者
Kiryong Chung
Han-Bom Moon
机构
[1] Kyungpook National University,Department of Mathematics Education
[2] Fordham University,Department of Mathematics
来源
Mathematische Zeitschrift | 2016年 / 283卷
关键词
Moduli space; Birational morphism; Fourier–Mukai transform; Partial desingularization; 14D22; 14F42; 14E15;
D O I
暂无
中图分类号
学科分类号
摘要
We study birational maps among (1) the moduli space of semistable sheaves of Hilbert polynomial 4m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4m+2$$\end{document} on a smooth quadric surface, (2) the moduli space of semistable sheaves of Hilbert polynomial m2+3m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m^{2}+3m+2$$\end{document} on P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^{3}$$\end{document}, (3) Kontsevich’s moduli space of genus-zero stable maps of degree 2 to the Grassmannian Gr(2, 4). A regular birational morphism from (1) to (2) is described in terms of Fourier–Mukai transforms. The map from (3) to (2) is Kirwan’s partial desingularization. We also investigate several geometric properties of 1) by using the variation of moduli spaces of stable pairs.
引用
收藏
页码:275 / 299
页数:24
相关论文
共 50 条
  • [41] Fourier-Mukai transform for fine compactified Prym varieties
    Franco, Emilio
    Hanson, Robert
    Ruano, Joao
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2025,
  • [42] THE RANK-ONE LIMIT OF THE FOURIER-MUKAI TRANSFORM
    van der Geer, Gerard
    Kouvidakis, Alexis
    DOCUMENTA MATHEMATICA, 2010, 15 : 747 - 763
  • [43] On a relative Fourier-Mukai transform on genus one fibrations
    Burban, I
    Kreussler, B
    MANUSCRIPTA MATHEMATICA, 2006, 120 (03) : 283 - 306
  • [44] Wall Crossing and the Fourier-Mukai Transform for Grassmann Flops
    Priddis, Nathan
    Shoemaker, Mark
    Wen, Yaoxiong
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2025, 21
  • [45] Spherical T-duality and the spherical Fourier-Mukai transform
    Bouwknegt, Peter
    Evslin, Jarah
    Mathai, Varghese
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 133 : 303 - 314
  • [46] The Fourier-Mukai transform of a universal family of stable vector bundles
    Reede, Fabian
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (02)
  • [47] COMPACTIFICATION OF MODULI OF PARABOLIC SHEAVES AND MODULI OF PARABOLIC HIGGS SHEAVES
    YOKOGAWA, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1993, 33 (02): : 451 - 504
  • [48] Moduli of sheaves
    Mestrano, Nicole
    Simpson, Carlos
    DEVELOPMENT OF MODULI THEORY - KYOTO 2013, 2016, 69 : 77 - 172
  • [49] A Fourier-Mukai transform for stable bundles on K 3 surfaces
    Bartocci, C
    Bruzzo, U
    Ruiperez, DH
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 486 : 1 - 16
  • [50] Fourier-Mukai transform of vector bundles on surfaces to Hilbert scheme
    Biswas, Indranil
    Nagaraj, D. S.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2017, 32 (01) : 43 - 50