Moduli of sheaves, Fourier–Mukai transform, and partial desingularization

被引:0
|
作者
Kiryong Chung
Han-Bom Moon
机构
[1] Kyungpook National University,Department of Mathematics Education
[2] Fordham University,Department of Mathematics
来源
Mathematische Zeitschrift | 2016年 / 283卷
关键词
Moduli space; Birational morphism; Fourier–Mukai transform; Partial desingularization; 14D22; 14F42; 14E15;
D O I
暂无
中图分类号
学科分类号
摘要
We study birational maps among (1) the moduli space of semistable sheaves of Hilbert polynomial 4m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4m+2$$\end{document} on a smooth quadric surface, (2) the moduli space of semistable sheaves of Hilbert polynomial m2+3m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m^{2}+3m+2$$\end{document} on P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^{3}$$\end{document}, (3) Kontsevich’s moduli space of genus-zero stable maps of degree 2 to the Grassmannian Gr(2, 4). A regular birational morphism from (1) to (2) is described in terms of Fourier–Mukai transforms. The map from (3) to (2) is Kirwan’s partial desingularization. We also investigate several geometric properties of 1) by using the variation of moduli spaces of stable pairs.
引用
收藏
页码:275 / 299
页数:24
相关论文
共 50 条
  • [31] M-regularity and the Fourier-Mukai transform
    Pareschi, Giuseppe
    Popa, Mihnea
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2008, 4 (03) : 587 - 611
  • [32] On a Relative Fourier–Mukai Transform on Genus One Fibrations
    Igor Burban
    Bernd Kreußler
    manuscripta mathematica, 2006, 120 : 283 - 306
  • [33] FOURIER–MUKAI TRANSFORM FOR FINE COMPACTIFIED PRYM VARIETIES
    Franco, Emilio
    Hanson, Robert
    Ruano, João
    arXiv, 2022,
  • [34] SYMPLECTIC BIEXTENSIONS AND A GENERALIZATION OF THE FOURIER-MUKAI TRANSFORM
    Polishchuk, A.
    MATHEMATICAL RESEARCH LETTERS, 1996, 3 (06) : 813 - 828
  • [35] The real Fourier-Mukai transform of Cayley cycles
    Kawai, Kotaro
    Yamamoto, Hikaru
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (05) : 1861 - 1898
  • [36] Twisted stability and Fourier-Mukai transform II
    Kōta Yoshioka
    manuscripta mathematica, 2003, 110 : 433 - 465
  • [37] An example of a non-Fourier–Mukai functor between derived categories of coherent sheaves
    Alice Rizzardo
    Michel Van den Bergh
    Amnon Neeman
    Inventiones mathematicae, 2019, 216 : 927 - 1004
  • [38] Fourier-Mukai transforms and semi-stable sheaves on nodal Weierstraß cubics
    Burban, I
    Kreussler, B
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 584 : 45 - 82
  • [39] An example of a non-Fourier-Mukai functor between derived categories of coherent sheaves
    Rizzardo, Alice
    Van den Bergh, Michel
    Neeman, Amnon
    INVENTIONES MATHEMATICAE, 2019, 216 (03) : 927 - 1004
  • [40] Gieseker stability and the Fourier-Mukai transform for Abelian surfaces
    Maciocia, A
    QUARTERLY JOURNAL OF MATHEMATICS, 1996, 47 (185): : 87 - 100