共 50 条
Moduli of sheaves, Fourier–Mukai transform, and partial desingularization
被引:0
|作者:
Kiryong Chung
Han-Bom Moon
机构:
[1] Kyungpook National University,Department of Mathematics Education
[2] Fordham University,Department of Mathematics
来源:
关键词:
Moduli space;
Birational morphism;
Fourier–Mukai transform;
Partial desingularization;
14D22;
14F42;
14E15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study birational maps among (1) the moduli space of semistable sheaves of Hilbert polynomial 4m+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4m+2$$\end{document} on a smooth quadric surface, (2) the moduli space of semistable sheaves of Hilbert polynomial m2+3m+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m^{2}+3m+2$$\end{document} on P3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {P}^{3}$$\end{document}, (3) Kontsevich’s moduli space of genus-zero stable maps of degree 2 to the Grassmannian Gr(2, 4). A regular birational morphism from (1) to (2) is described in terms of Fourier–Mukai transforms. The map from (3) to (2) is Kirwan’s partial desingularization. We also investigate several geometric properties of 1) by using the variation of moduli spaces of stable pairs.
引用
收藏
页码:275 / 299
页数:24
相关论文