Using Bayesian parameter estimation to learn more from data without black boxes

被引:0
|
作者
Rachel C. Kurchin
机构
[1] Carnegie Mellon University,
[2] Materials Science and Engineering Department,undefined
来源
Nature Reviews Physics | 2024年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In an age of expensive experiments and hype around new data-driven methods, researchers understandably want to ensure they are gleaning as much insight from their data as possible. Rachel C. Kurchin argues that there is still plenty to be learned from older approaches without turning to black boxes.
引用
收藏
页码:152 / 154
页数:2
相关论文
共 50 条
  • [31] Parameter estimation using aggregate data
    Banks, H. . T.
    Meade, Annabel E.
    Schacht, Celia
    Catenacci, Jared
    Thompson, W. Clayton
    Abate-Daga, Daniel
    Enderling, Heiko
    APPLIED MATHEMATICS LETTERS, 2020, 100
  • [32] Bayesian treatment of prospective LISA parameter estimation for massive black hole mergers
    Baker, John G.
    Marsat, Sylvain
    11TH INTERNATIONAL LISA SYMPOSIUM, 2017, 840
  • [33] The more they hear the more they learn? Using data from bilinguals to test models of early lexical development
    Sander-Montant, Andrea
    Perez, Melanie Lopez
    Byers-Heinlein, Krista
    COGNITION, 2023, 238
  • [34] Bayesian Texture and Instrument Parameter Estimation From Blurred and Noisy Images Using MCMC
    Vacar, Cornelia
    Giovannelli, Jean-Francois
    Berthoumieu, Yannick
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (06) : 707 - 711
  • [35] Learn More From Your Data With Asymptotic Regression
    Clarke, Alasdair D. F.
    Hunt, Amelia R.
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-GENERAL, 2025,
  • [36] Bayesian Hierarchical Modeling for Parameter Estimation in Normal Distribution with Aggregated Data
    Castro, Cecilia
    Henriques, Lucas
    Prata, Felipe
    20TH INTERNATIONAL PROBABILISTIC WORKSHOP, IPW 2024, 2024, 494 : 334 - 344
  • [37] Bayesian Parameter Estimation for Nonlinear Dynamics Using Sensitivity Analysis
    Chou, Yi
    Sankaranarayanan, Sriram
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 5708 - 5714
  • [38] Bayesian parameter estimation in the second LISA Pathfinder mock data challenge
    Nofrarias, M.
    Roever, C.
    Hewitson, M.
    Monsky, A.
    Heinzel, G.
    Danzmann, K.
    Ferraioli, L.
    Hueller, M.
    Vitale, S.
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [39] Coupled hydrogeophysical parameter estimation using a sequential Bayesian approach
    Rings, J.
    Huisman, J. A.
    Vereecken, H.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (03) : 545 - 556
  • [40] Using Bayesian methods for the parameter estimation of deformation monitoring networks
    Tanir, E.
    Felsenstein, K.
    Yalcinkaya, M.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2008, 8 (02) : 335 - 347