Using Bayesian parameter estimation to learn more from data without black boxes

被引:0
|
作者
Rachel C. Kurchin
机构
[1] Carnegie Mellon University,
[2] Materials Science and Engineering Department,undefined
来源
Nature Reviews Physics | 2024年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In an age of expensive experiments and hype around new data-driven methods, researchers understandably want to ensure they are gleaning as much insight from their data as possible. Rachel C. Kurchin argues that there is still plenty to be learned from older approaches without turning to black boxes.
引用
收藏
页码:152 / 154
页数:2
相关论文
共 50 条
  • [41] RESAMPLED ENSEMBLE KALMAN INVERSION FOR BAYESIAN PARAMETER ESTIMATION WITH SEQUENTIAL DATA
    Wu, Jiangqi
    Wen, Linjie
    Li, Jinglai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (04): : 837 - 850
  • [42] Bayesian Parameter Estimation of Weibull Mixtures Using Cuckoo Search
    Chi, Kuo
    Kang, Jianshe
    Wu, Kun
    Wang, Xuan
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS (INCOS), 2016, : 411 - 414
  • [43] Parameter Estimation in Linear Dynamic Systems using Bayesian networks
    Garan, Maryna
    Vernon, Sylvain
    Kovalenko, Iaroslav
    Modrlak, Osvald
    Lepsik, Petr
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 203 - 208
  • [44] Exponential parameter estimation (in NMR) using Bayesian probability theory
    Bretthorst, GL
    Hutton, WC
    Garbow, JR
    Ackerman, JJH
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2005, 27A (02) : 55 - 63
  • [45] Parameter estimation estimation from pulsed thermography data using the virtual wave concept
    Mayr, G.
    Stockner, G.
    Plasser, H.
    Hendorfer, G.
    Burgholzer, P.
    NDT & E INTERNATIONAL, 2018, 100 : 101 - 107
  • [46] Parameter Estimation in Bayesian Networks Using Overlapping Swarm Intelligence
    Fortier, Nathan
    Sheppard, John
    Strasser, Shane
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 9 - 16
  • [47] Parameter estimation for the fractional Schrodinger equation using Bayesian method
    Zhang, Hui
    Jiang, Xiaoyun
    Fan, Wenping
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
  • [48] Bayesian Estimation of Parameter For Different Loss Functions Using Progressive Type-II Censored Data
    Kumar, Pradip
    Kumar, Pawan
    Kumar, Dinesh
    Singh, Sanjay Kumar
    Singh, Umesh
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2023, 16 (03) : 519 - 540
  • [49] MIXED-WEIBULL PARAMETER-ESTIMATION FOR BURN-IN DATA USING THE BAYESIAN-APPROACH
    KECECIOGLU, D
    SUN, FB
    MICROELECTRONICS AND RELIABILITY, 1994, 34 (10): : 1657 - 1679
  • [50] Using Mixed-Effects Models to Learn Bayesian Networks from Related Data Sets
    Scutari, Marco
    Marquis, Christopher
    Azzimonti, Laura
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 186, 2022, 186