Bayesian treatment of prospective LISA parameter estimation for massive black hole mergers

被引:0
|
作者
Baker, John G. [1 ]
Marsat, Sylvain [2 ]
机构
[1] NASA Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
[2] Albert Einstein Inst, Muehlenberg 1, D-14476 Potsdam, Germany
来源
关键词
D O I
10.1088/1742-6596/840/1/012051
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A full understanding of LISA's science capability will require accurate models of incident waveform signals and the instrumental response. While Fisher matrix analysis is useful for some estimates, a full Bayesian treatment is needed for important cases at the limit of LISA's capability. We will apply fast analysis algorithms enabling accurate treatment with EOB waveforms and the full-featured LISA response to study the significance of higher spherical harmonics and mergers in LISA analysis.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] LISA: Parameter estimation for massive black hole binaries
    Vecchio, A
    Cutler, C
    [J]. LASER INTERFEROMETER SPACE ANTENNA, 1998, 456 : 101 - 109
  • [2] Impact of mergers on LISA parameter estimation for nonspinning black hole binaries
    McWilliams, Sean T.
    Thorpe, James Ira
    Baker, John G.
    Kelly, Bernard J.
    [J]. PHYSICAL REVIEW D, 2010, 81 (06)
  • [3] GPU-accelerated massive black hole binary parameter estimation with LISA
    Katz, Michael L.
    Marsat, Sylvain
    Chua, Alvin J. K.
    Babak, Stanislav
    Larson, Shane L.
    [J]. PHYSICAL REVIEW D, 2020, 102 (02)
  • [4] Galaxy fields of LISA massive black hole mergers in a simulated universe
    Lops, Gaia
    Izquierdo-Villalba, David
    Colpi, Monica
    Bonoli, Silvia
    Sesana, Alberto
    Mangiagli, Alberto
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 519 (04) : 5962 - 5986
  • [5] Effect of data gaps on the detectability and parameter estimation of massive black hole binaries with LISA
    Dey, Kallol
    Karnesis, Nikolaos
    Toubiana, Alexandre
    Barausse, Enrico
    Korsakova, Natalia
    Baghi, Quentin
    Basak, Soumen
    [J]. PHYSICAL REVIEW D, 2021, 104 (04)
  • [6] Bayesian parameter estimation of stellar-mass black-hole binaries with LISA
    Buscicchio, Riccardo
    Klein, Antoine
    Roebber, Elinore
    Moore, Christopher J.
    Gerosa, Davide
    Finch, Eliot
    Vecchio, Alberto
    [J]. PHYSICAL REVIEW D, 2021, 104 (04)
  • [7] Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce
    Arun, K. G.
    Babak, Stas
    Berti, Emanuele
    Cornish, Neil
    Cutler, Curt
    Gair, Jonathan
    Hughes, Scott A.
    Iyer, Bala R.
    Lang, Ryan N.
    Mandel, Ilya
    Porter, Edward K.
    Sathyaprakash, Bangalore S.
    Sinha, Siddhartha
    Sintes, Alicia M.
    Trias, Miquel
    Van Den Broeck, Chris
    Volonteri, Marta
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (09)
  • [8] Characterization of lensing selection effects for LISA massive black hole binary mergers
    Cusin, Giulia
    Tamanini, Nicola
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 504 (03) : 3610 - 3618
  • [9] Parameter estimation of coalescing supermassive black hole binaries with LISA
    Arun, K. G.
    [J]. PHYSICAL REVIEW D, 2006, 74 (02):
  • [10] Exploring the Bayesian parameter estimation of binary black holes with LISA
    Marsat, Sylvain
    Baker, John G.
    Dal Canton, Tito
    [J]. PHYSICAL REVIEW D, 2021, 103 (08)