GPU-accelerated massive black hole binary parameter estimation with LISA

被引:26
|
作者
Katz, Michael L. [1 ,2 ]
Marsat, Sylvain [3 ]
Chua, Alvin J. K. [4 ]
Babak, Stanislav [3 ,5 ]
Larson, Shane L. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60201 USA
[2] Ctr Interdisciplinary Explorat & Res Astrophys, Evanston, IL 60201 USA
[3] Lab Astroparticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, F-75013 Paris, France
[4] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[5] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Region, Russia
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
DIRECT COLLAPSE; ACCRETION; SELECTION; WAVES;
D O I
10.1103/PhysRevD.102.023033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Laser Interferometer Space Antenna (LISA) is slated for launch in the early 2030s. A main target of the mission is massive black hole binaries that have an expected detection rate of similar to 20 yr(-) (1). We present a parameter estimation analysis for a variety of massive black hole binaries. This analysis is performed with a graphics processing unit (GPU) implementation comprising the PhenomHM waveform with higher-order harmonic modes and aligned spins; a fast frequency-domain LISA detector response function; and a GPU-native likelihood computation. The computational performance achieved with the GPU is shown to be 500 times greater than with a similar CPU implementation, which allows us to analyze full noise-infused injections at a realistic Fourier bin width for the LISA mission in a tractable and efficient amount of time. With these fast likelihood computations, we study the effect of adding aligned spins to an analysis with higher-order modes by testing different configurations of spins in the injection, as well as the effect of varied and fixed spins during sampling. Within these tests, we examine three different binaries with varying mass ratios, redshifts, sky locations, and detector-frame total masses ranging over 3 orders of magnitude. We discuss varied correlations between the total masses and mass ratios; unique spin posteriors for the larger mass binaries; and the constraints on parameters when fixing spins during sampling, allowing us to compare to previous analyses that did not include aligned spins.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] LISA: Parameter estimation for massive black hole binaries
    Vecchio, A
    Cutler, C
    [J]. LASER INTERFEROMETER SPACE ANTENNA, 1998, 456 : 101 - 109
  • [2] Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce
    Arun, K. G.
    Babak, Stas
    Berti, Emanuele
    Cornish, Neil
    Cutler, Curt
    Gair, Jonathan
    Hughes, Scott A.
    Iyer, Bala R.
    Lang, Ryan N.
    Mandel, Ilya
    Porter, Edward K.
    Sathyaprakash, Bangalore S.
    Sinha, Siddhartha
    Sintes, Alicia M.
    Trias, Miquel
    Van Den Broeck, Chris
    Volonteri, Marta
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (09)
  • [3] Bayesian treatment of prospective LISA parameter estimation for massive black hole mergers
    Baker, John G.
    Marsat, Sylvain
    [J]. 11TH INTERNATIONAL LISA SYMPOSIUM, 2017, 840
  • [4] Probing massive black hole binary populations with LISA
    Katz, Michael L.
    Kelley, Luke Zoltan
    Dosopoulou, Fani
    Berry, Samantha
    Blecha, Laura
    Larson, Shane L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 491 (02) : 2301 - 2317
  • [5] Effect of data gaps on the detectability and parameter estimation of massive black hole binaries with LISA
    Dey, Kallol
    Karnesis, Nikolaos
    Toubiana, Alexandre
    Barausse, Enrico
    Korsakova, Natalia
    Baghi, Quentin
    Basak, Soumen
    [J]. PHYSICAL REVIEW D, 2021, 104 (04)
  • [6] LISA observations of rapidly spinning massive black hole binary systems
    Vecchio, A
    [J]. PHYSICAL REVIEW D, 2004, 70 (04):
  • [7] Parameter estimation of coalescing supermassive black hole binaries with LISA
    Arun, K. G.
    [J]. PHYSICAL REVIEW D, 2006, 74 (02):
  • [8] Exploring the Bayesian parameter estimation of binary black holes with LISA
    Marsat, Sylvain
    Baker, John G.
    Dal Canton, Tito
    [J]. PHYSICAL REVIEW D, 2021, 103 (08)
  • [9] GPU-Accelerated Real-Time Stereo Estimation With Binary Neural Network
    Chen, Gang
    Meng, Haitao
    Liang, Yucheng
    Huang, Kai
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2020, 31 (12) : 2896 - 2907
  • [10] GPU-accelerated simulations of isolated black holes
    Lewis, Adam G. M.
    Pfeiffer, Harald P.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (09)