Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication

被引:0
|
作者
Berkcan Kapusuzoglu
Sankaran Mahadevan
机构
[1] Vanderbilt University,Department of Civil and Environmental Engineering
来源
JOM | 2020年 / 72卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article investigates several physics-informed and hybrid machine learning strategies that incorporate physics knowledge in experimental data-driven deep-learning models for predicting the bond quality and porosity of fused filament fabrication (FFF) parts. Three types of strategies are explored to incorporate physics constraints and multi-physics FFF simulation results into a deep neural network (DNN), thus ensuring consistency with physical laws: (1) incorporate physics constraints within the loss function of the DNN, (2) use physics model outputs as additional inputs to the DNN model, and (3) pre-train a DNN model with physics model input-output and then update it with experimental data. These strategies help to enforce a physically consistent relationship between bond quality and tensile strength, thus making porosity predictions physically meaningful. Eight different combinations of the above strategies are investigated. The results show how the combination of multiple strategies produces accurate machine learning models even with limited experimental data.
引用
收藏
页码:4695 / 4705
页数:10
相关论文
共 50 条
  • [41] Neural Oscillators for Generalization of Physics-Informed Machine Learning
    Kapoor, Taniya
    Chandra, Abhishek
    Tartakovsky, Daniel M.
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13059 - 13067
  • [42] Physics-informed machine learning for programmable photonic circuits
    Teofilovic, Isidora
    Zibar, Darko
    Da Ros, Francesco
    MACHINE LEARNING IN PHOTONICS, 2024, 13017
  • [43] Physics-informed machine learning for moving load problems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647
  • [44] Probabilistic physics-informed machine learning for dynamic systems
    Subramanian, Abhinav
    Mahadevan, Sankaran
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [45] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [46] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [47] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [48] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [49] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [50] Predicting glass structure by physics-informed machine learning
    Mikkel L. Bødker
    Mathieu Bauchy
    Tao Du
    John C. Mauro
    Morten M. Smedskjaer
    npj Computational Materials, 8