Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication

被引:0
|
作者
Berkcan Kapusuzoglu
Sankaran Mahadevan
机构
[1] Vanderbilt University,Department of Civil and Environmental Engineering
来源
JOM | 2020年 / 72卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article investigates several physics-informed and hybrid machine learning strategies that incorporate physics knowledge in experimental data-driven deep-learning models for predicting the bond quality and porosity of fused filament fabrication (FFF) parts. Three types of strategies are explored to incorporate physics constraints and multi-physics FFF simulation results into a deep neural network (DNN), thus ensuring consistency with physical laws: (1) incorporate physics constraints within the loss function of the DNN, (2) use physics model outputs as additional inputs to the DNN model, and (3) pre-train a DNN model with physics model input-output and then update it with experimental data. These strategies help to enforce a physically consistent relationship between bond quality and tensile strength, thus making porosity predictions physically meaningful. Eight different combinations of the above strategies are investigated. The results show how the combination of multiple strategies produces accurate machine learning models even with limited experimental data.
引用
收藏
页码:4695 / 4705
页数:10
相关论文
共 50 条
  • [31] Application of Physics-Informed Machine Learning Techniques for Power Grid Parameter Estimation
    Lakshminarayana, Subhash
    Sthapit, Saurav
    Maple, Carsten
    SUSTAINABILITY, 2022, 14 (04)
  • [32] A PHYSICS-INFORMED DATA DRIVEN APPROACH TO ADDITIVE MANUFACTURING PARAMETER OPTIMIZATION
    Dial, Laura C.
    Ghosh, Sayan
    Kumar, Natarajan Chennimalai
    Kumar, Vijay S.
    Gupta, Vipul K.
    Hanlon, Timothy
    Dheeradhada, Voramon S.
    Aggour, Kareem S.
    Vinciquerra, Joseph
    ADVANCED MATERIALS & PROCESSES, 2019, 177 (07): : 16 - 21
  • [33] Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks
    Zhu, Qiming
    Liu, Zeliang
    Yan, Jinhui
    COMPUTATIONAL MECHANICS, 2021, 67 (02) : 619 - 635
  • [34] Physics-informed machine learning for modeling multidimensional dynamics
    Abbasi, Amirhassan
    Kambali, Prashant N.
    Shahidi, Parham
    Nataraj, C.
    NONLINEAR DYNAMICS, 2024, 112 (24) : 21565 - 21585
  • [35] A PHYSICS-INFORMED DATA DRIVEN APPROACH TO ADDITIVE MANUFACTURING PARAMETER OPTIMIZATION
    Dial L.C.
    Ghosh S.
    Kumar N.C.
    Kumar V.S.
    Gupta V.K.
    Hanlon T.
    Dheeradhada V.S.
    Aggour K.S.
    Vinciquerra J.
    Advanced Materials and Processes, 2019, 177 (07): : 16 - 21
  • [36] Physics-Informed Machine Learning for DRAM Error Modeling
    Baseman, Elisabeth
    DeBardeleben, Nathan
    Blanchard, Sean
    Moore, Juston
    Tkachenko, Olena
    Ferreira, Kurt
    Siddiqua, Taniya
    Sridharan, Vilas
    2018 IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT), 2018,
  • [37] The scaling of physics-informed machine learning with data and dimensions
    Miller S.T.
    Lindner J.F.
    Choudhary A.
    Sinha S.
    Ditto W.L.
    Chaos, Solitons and Fractals: X, 2020, 5
  • [38] Physics-informed Machine Learning for Modeling Turbulence in Supernovae
    Karpov, Platon I.
    Huang, Chengkun
    Sitdikov, Iskandar
    Fryer, Chris L.
    Woosley, Stan
    Pilania, Ghanshyam
    ASTROPHYSICAL JOURNAL, 2022, 940 (01):
  • [39] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)
  • [40] Physics-informed machine learning for inorganic scintillator discovery
    Pilania, G.
    McClellan, K. J.
    Stanek, C. R.
    Uberuaga, B. P.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):