Physics-informed machine learning for programmable photonic circuits

被引:0
|
作者
Teofilovic, Isidora [1 ]
Zibar, Darko [1 ]
Da Ros, Francesco [1 ]
机构
[1] Tech Univ Denmark, Orsteds Plads 343, DK-2800 Lyngby, Denmark
来源
MACHINE LEARNING IN PHOTONICS | 2024年 / 13017卷
关键词
Physics-informed machine learning; integrated photonics; thermal crosstalk;
D O I
10.1117/12.3017656
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Integrated photonic circuits offer a promising platform to implement matrix-vector multiplication in optical feedforward neural networks. The most common implementations rely on thermal phase shifters, which are inevitably susceptible to effects such as thermal and electrical crosstalk. Although deterministic, crosstalk-induced distortions have been challenging to accurately incorporate into physics-based analytical models. Additionally, analog hardware platforms suffer from fabrication deviations, that can have a significant impact on the computing performance, thus limiting scalability in implemented matrix size. In contrast, data-driven modeling techniques have shown to be promising approaches to modeling such circuits, yet they rely on black-box physics-agnostic modeling, require massive and unscalable amounts of training data, and cannot guarantee physically plausible results. Going beyond the data-driven black-box modeling techniques, but still taking advantage of the information captured by the data, we investigate the advantages of using physics-informed machine learning for photonic meshes. We analyze the ability of this approach to provide more accurate, less data-hungry, and physically plausible models for programmable photonic meshes. Moreover, we explore the potential to extract the knowledge from the trained model.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [2] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [3] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [4] A Taxonomic Survey of Physics-Informed Machine Learning
    Pateras, Joseph
    Rana, Pratip
    Ghosh, Preetam
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [5] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [6] Physics-informed machine learning for modeling multidimensional dynamics
    Abbasi, Amirhassan
    Kambali, Prashant N.
    Shahidi, Parham
    Nataraj, C.
    NONLINEAR DYNAMICS, 2024, 112 (24) : 21565 - 21585
  • [7] Physics-Informed Machine Learning for DRAM Error Modeling
    Baseman, Elisabeth
    DeBardeleben, Nathan
    Blanchard, Sean
    Moore, Juston
    Tkachenko, Olena
    Ferreira, Kurt
    Siddiqua, Taniya
    Sridharan, Vilas
    2018 IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT), 2018,
  • [8] Physics-informed Machine Learning for Modeling Turbulence in Supernovae
    Karpov, Platon I.
    Huang, Chengkun
    Sitdikov, Iskandar
    Fryer, Chris L.
    Woosley, Stan
    Pilania, Ghanshyam
    ASTROPHYSICAL JOURNAL, 2022, 940 (01):
  • [9] The scaling of physics-informed machine learning with data and dimensions
    Miller S.T.
    Lindner J.F.
    Choudhary A.
    Sinha S.
    Ditto W.L.
    Chaos, Solitons and Fractals: X, 2020, 5
  • [10] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)