Hopf–Hopf bifurcation analysis based on resonance and non-resonance in a simplified railway wheelset model

被引:0
|
作者
Peng Guo
Caihong Huang
Jing Zeng
Hongjun Cao
机构
[1] Beijing Jiaotong University,Department of Mathematics, School of Science
[2] Southwest Jiaotong University,State Key Laboratory of Traction Power
来源
Nonlinear Dynamics | 2022年 / 108卷
关键词
Hopf–Hopf bifurcation; Codimension-two bifurcation; Hunting motion; Resonance; Wheelset;
D O I
暂无
中图分类号
学科分类号
摘要
This paper mainly investigates the dynamics of the non-resonant and near-resonant Hopf–Hopf bifurcations caused by the interaction of the lateral and yaw motion in a simplified railway wheelset model, which involves local and global dynamical scenarios, respectively. This study aims to clarify the resonances due to the wheelset instability. Firstly, the ratio of longitudinal suspension stiffness and the square of natural frequency in yawing direction denoted as the parameter k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} has an important impact on the transitions of distinct Hopf–Hopf bifurcations, and the ratio of the oscillation frequencies ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}/ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{document} at the Hopf–Hopf singularity point will reduce with the decrease in k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} within a certain range. Secondly, the absence of strong resonance under the non-resonant condition indicates that the operation wheelset will not produce the maximum oscillation amplitude triggered by the resonance point, and several torus solutions arisen from the wheelset are obtained by numerical simulation. Thirdly, five near-resonant Hopf–Hopf bifurcations reveal that the global dynamical scenario becomes much more complex than other cases as k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} decreases. In particular, near the 1:4 resonant Hopf–Hopf interaction occurs when ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}/ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{document} is close to 1:4, which has the most marked effect on wheelset hunting motions and resonances. Finally, the cyclic bifurcation behaviors under the near-resonant conditions indicate the coexistence of multiple limit cycles, and the loop of equilibria and limit cycles detected between two Hopf bifurcation points reveals that the wheelset will perform a cyclical motion in lateral and yaw direction. These results show that the change in frequency ratio induced by the intersection of the lateral and yaw motion of the unbalanced wheelset will greatly affect the hunting motions and resonances of railway vehicles. Therefore, appropriately increasing the value of k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} is helpful to maintain the vehicle stability.
引用
收藏
页码:1197 / 1215
页数:18
相关论文
共 50 条
  • [41] Coherence resonance near a Hopf bifurcation -: art. no. 123903
    Ushakov, OV
    Wünsche, HJ
    Henneberger, F
    Khovanov, IA
    Schimansky-Geier, L
    Zaks, MA
    PHYSICAL REVIEW LETTERS, 2005, 95 (12)
  • [42] ON HARMONIC RESONANCE IN FORCED NONLINEAR OSCILLATORS EXHIBITING A HOPF-BIFURCATION
    GROSS, P
    IMA JOURNAL OF APPLIED MATHEMATICS, 1993, 50 (01) : 1 - 12
  • [43] Hopf and Turing–Hopf bifurcation analysis of a delayed predator–prey model with schooling behavior
    Shihua Ding
    Rui Yang
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [44] Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays
    Song, YL
    Han, MA
    Wei, JJ
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 200 (3-4) : 185 - 204
  • [45] Hopf Bifurcation Analysis of a Housefly Model with Time Delay
    Chang, Xiaoyuan
    Gao, Xu
    Zhang, Jimin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (09):
  • [46] Stability and Hopf bifurcation analysis in a TCP fluid model
    Liu, Feng
    Guan, Zhi-Hong
    Wang, Hua O.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 353 - 363
  • [47] Stability and Hopf Bifurcation Analysis of a Delayed SEIS Model
    Reddy, Madhusudhan K.
    Narayan, Lakshmi K.
    Reddy, Ravindra B.
    INTERNATIONAL JOURNAL OF ECOLOGY & DEVELOPMENT, 2021, 36 (01) : 82 - 90
  • [48] Stability and Hopf Bifurcation Analysis on a Bazykin Model with Delay
    Zhang, Jianming
    Zhang, Lijun
    Khalique, Chaudry Masood
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [49] Hopf bifurcation analysis of a predator-prey model
    Nie, D. D.
    Xiong, Z. L.
    Wang, W.
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING: NEW ADVANCES, 2016, : 75 - 83
  • [50] Stability and Hopf bifurcation analysis in a delay Swarms model
    Liu Feng
    Yin Xiang
    Ling Guang
    Guan Zhi-Hong
    Hua O, Wang
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1049 - 1053