Hopf–Hopf bifurcation analysis based on resonance and non-resonance in a simplified railway wheelset model

被引:0
|
作者
Peng Guo
Caihong Huang
Jing Zeng
Hongjun Cao
机构
[1] Beijing Jiaotong University,Department of Mathematics, School of Science
[2] Southwest Jiaotong University,State Key Laboratory of Traction Power
来源
Nonlinear Dynamics | 2022年 / 108卷
关键词
Hopf–Hopf bifurcation; Codimension-two bifurcation; Hunting motion; Resonance; Wheelset;
D O I
暂无
中图分类号
学科分类号
摘要
This paper mainly investigates the dynamics of the non-resonant and near-resonant Hopf–Hopf bifurcations caused by the interaction of the lateral and yaw motion in a simplified railway wheelset model, which involves local and global dynamical scenarios, respectively. This study aims to clarify the resonances due to the wheelset instability. Firstly, the ratio of longitudinal suspension stiffness and the square of natural frequency in yawing direction denoted as the parameter k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} has an important impact on the transitions of distinct Hopf–Hopf bifurcations, and the ratio of the oscillation frequencies ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}/ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{document} at the Hopf–Hopf singularity point will reduce with the decrease in k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} within a certain range. Secondly, the absence of strong resonance under the non-resonant condition indicates that the operation wheelset will not produce the maximum oscillation amplitude triggered by the resonance point, and several torus solutions arisen from the wheelset are obtained by numerical simulation. Thirdly, five near-resonant Hopf–Hopf bifurcations reveal that the global dynamical scenario becomes much more complex than other cases as k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} decreases. In particular, near the 1:4 resonant Hopf–Hopf interaction occurs when ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}/ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{document} is close to 1:4, which has the most marked effect on wheelset hunting motions and resonances. Finally, the cyclic bifurcation behaviors under the near-resonant conditions indicate the coexistence of multiple limit cycles, and the loop of equilibria and limit cycles detected between two Hopf bifurcation points reveals that the wheelset will perform a cyclical motion in lateral and yaw direction. These results show that the change in frequency ratio induced by the intersection of the lateral and yaw motion of the unbalanced wheelset will greatly affect the hunting motions and resonances of railway vehicles. Therefore, appropriately increasing the value of k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} is helpful to maintain the vehicle stability.
引用
收藏
页码:1197 / 1215
页数:18
相关论文
共 50 条
  • [21] HOPF-BIFURCATION AT 1-1 RESONANCE
    CAPRINO, S
    MAFFEI, C
    NEGRINI, P
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (09) : 1011 - 1032
  • [22] The Andronov-Hopf Bifurcation with 2:1 Resonance
    D. Yu. Volkov
    Journal of Mathematical Sciences, 2005, 128 (2) : 2831 - 2834
  • [23] Magnetoelectric fractals, Magnetoelectric parametric resonance and Hopf bifurcation
    Wanic, M.
    Toklikishvili, Z.
    Mishra, S. K.
    Trybus, M.
    Chotorlishvili, L.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [24] Experiments on stochastic resonance near Hopf bifurcation in a non-magnetized plasma
    Yang, HB
    Liu, WD
    Zheng, J
    Zhuang, G
    Liang, XP
    Xie, JL
    Yu, CX
    ACTA PHYSICA SINICA, 2000, 49 (03) : 508 - 512
  • [25] Experiments on stochastic resonance near Hopf bifurcation in a non-magnetized plasma
    Yang, Hongbo
    Liu, Wandong
    Zheng, Jian
    Zhuang, Ge
    Liang, Xiaoping
    Xie, Jinlin
    Yu, Changxuan
    Wuli Xuebao/Acta Physica Sinica, 2000, 49 (03): : 508 - 512
  • [26] Two-parameter bifurcation analysis of limit cycles of a simplified railway wheelset model
    Lifang Cheng
    Xiukun Wei
    Hongjun Cao
    Nonlinear Dynamics, 2018, 93 : 2415 - 2431
  • [27] Two-parameter bifurcation analysis of limit cycles of a simplified railway wheelset model
    Cheng, Lifang
    Wei, Xiukun
    Cao, Hongjun
    NONLINEAR DYNAMICS, 2018, 93 (04) : 2415 - 2431
  • [28] Coherence resonance near the Hopf bifurcation in coupled chaotic oscillators
    Zhan, M
    Wei, GW
    Lai, CH
    Lai, YC
    Liu, ZH
    PHYSICAL REVIEW E, 2002, 66 (03): : 1 - 036201
  • [29] Coherence resonance induced by colored noise near Hopf bifurcation
    Ma, Juan
    Xiao, Tiejun
    Hou, Zhonghuai
    Xin, Houwen
    CHAOS, 2008, 18 (04)
  • [30] THE DOUBLE HOPF-BIFURCATION WITH 2-1 RESONANCE
    KNOBLOCH, E
    PROCTOR, MRE
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 415 (1848): : 61 - 90