Hopf–Hopf bifurcation analysis based on resonance and non-resonance in a simplified railway wheelset model

被引:0
|
作者
Peng Guo
Caihong Huang
Jing Zeng
Hongjun Cao
机构
[1] Beijing Jiaotong University,Department of Mathematics, School of Science
[2] Southwest Jiaotong University,State Key Laboratory of Traction Power
来源
Nonlinear Dynamics | 2022年 / 108卷
关键词
Hopf–Hopf bifurcation; Codimension-two bifurcation; Hunting motion; Resonance; Wheelset;
D O I
暂无
中图分类号
学科分类号
摘要
This paper mainly investigates the dynamics of the non-resonant and near-resonant Hopf–Hopf bifurcations caused by the interaction of the lateral and yaw motion in a simplified railway wheelset model, which involves local and global dynamical scenarios, respectively. This study aims to clarify the resonances due to the wheelset instability. Firstly, the ratio of longitudinal suspension stiffness and the square of natural frequency in yawing direction denoted as the parameter k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} has an important impact on the transitions of distinct Hopf–Hopf bifurcations, and the ratio of the oscillation frequencies ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}/ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{document} at the Hopf–Hopf singularity point will reduce with the decrease in k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} within a certain range. Secondly, the absence of strong resonance under the non-resonant condition indicates that the operation wheelset will not produce the maximum oscillation amplitude triggered by the resonance point, and several torus solutions arisen from the wheelset are obtained by numerical simulation. Thirdly, five near-resonant Hopf–Hopf bifurcations reveal that the global dynamical scenario becomes much more complex than other cases as k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} decreases. In particular, near the 1:4 resonant Hopf–Hopf interaction occurs when ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}/ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{document} is close to 1:4, which has the most marked effect on wheelset hunting motions and resonances. Finally, the cyclic bifurcation behaviors under the near-resonant conditions indicate the coexistence of multiple limit cycles, and the loop of equilibria and limit cycles detected between two Hopf bifurcation points reveals that the wheelset will perform a cyclical motion in lateral and yaw direction. These results show that the change in frequency ratio induced by the intersection of the lateral and yaw motion of the unbalanced wheelset will greatly affect the hunting motions and resonances of railway vehicles. Therefore, appropriately increasing the value of k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} is helpful to maintain the vehicle stability.
引用
收藏
页码:1197 / 1215
页数:18
相关论文
共 50 条
  • [31] Parametric Resonance of Hopf Bifurcation in a Generalized Beck's Column
    Paolone, Achille
    Romeo, Francesco
    Vasta, Marcello
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2009, 4 (01): : 1 - 8
  • [32] A geometric characterisation of resonance in Hopf bifurcation from relative equilibria
    Chan, David
    Melbourne, Ian
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 234 (02) : 98 - 104
  • [33] HOPF-BIFURCATION - THE APPEARANCE OF VIRTUAL PERIODS IN CASES OF RESONANCE
    ALLIGOOD, KT
    YORKE, JA
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 64 (03) : 375 - 394
  • [34] HOPF-BIFURCATION WITH NONSEMISIMPLE 1-1 RESONANCE
    VANGILS, SA
    KRUPA, M
    LANGFORD, WF
    NONLINEARITY, 1990, 3 (03) : 825 - 850
  • [35] HOPF BIFURCATION ANALYSIS OF A PHAGE THERAPY MODEL
    Kyaw, Ei Ei
    Zheng, Hongchan
    Wang, Jingjing
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2023, 18 (01) : 87 - 106
  • [36] A bidirectional Hopf bifurcation analysis of Parkinson's oscillation in a simplified basal ganglia model
    Hu, Bing
    Xu, Minbo
    Zhu, Luyao
    Lin, Jiahui
    Wang, Zhizhi
    Wang, Dingjiang
    Zhang, Dongmei
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [37] Hopf Bifurcation Analysis of a Two-Dimensional Simplified Hodgkin-Huxley Model
    Wang, Hu
    Wang, Sha
    Gu, Yajuan
    Yu, Yongguang
    MATHEMATICS, 2023, 11 (03)
  • [38] Delay induced Hopf bifurcation in a simplified network congestion control model
    Wang, ZF
    Chu, TG
    CHAOS SOLITONS & FRACTALS, 2006, 28 (01) : 161 - 172
  • [39] RECONNECTION OF COMPLEX EIGENVALUES OF RESONANCE MODES AND ONSET OF THE HOPF-BIFURCATION
    HE, KF
    HU, G
    PHYSICS LETTERS A, 1994, 190 (01) : 38 - 48
  • [40] Symbolic Computation for a Class Vector Field with Double Resonance Hopf Bifurcation
    Wang, Yunhai
    Han, Jinglong
    ICECT: 2009 INTERNATIONAL CONFERENCE ON ELECTRONIC COMPUTER TECHNOLOGY, PROCEEDINGS, 2009, : 136 - 140