Hopf–Hopf bifurcation analysis based on resonance and non-resonance in a simplified railway wheelset model

被引:0
|
作者
Peng Guo
Caihong Huang
Jing Zeng
Hongjun Cao
机构
[1] Beijing Jiaotong University,Department of Mathematics, School of Science
[2] Southwest Jiaotong University,State Key Laboratory of Traction Power
来源
Nonlinear Dynamics | 2022年 / 108卷
关键词
Hopf–Hopf bifurcation; Codimension-two bifurcation; Hunting motion; Resonance; Wheelset;
D O I
暂无
中图分类号
学科分类号
摘要
This paper mainly investigates the dynamics of the non-resonant and near-resonant Hopf–Hopf bifurcations caused by the interaction of the lateral and yaw motion in a simplified railway wheelset model, which involves local and global dynamical scenarios, respectively. This study aims to clarify the resonances due to the wheelset instability. Firstly, the ratio of longitudinal suspension stiffness and the square of natural frequency in yawing direction denoted as the parameter k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} has an important impact on the transitions of distinct Hopf–Hopf bifurcations, and the ratio of the oscillation frequencies ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}/ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{document} at the Hopf–Hopf singularity point will reduce with the decrease in k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} within a certain range. Secondly, the absence of strong resonance under the non-resonant condition indicates that the operation wheelset will not produce the maximum oscillation amplitude triggered by the resonance point, and several torus solutions arisen from the wheelset are obtained by numerical simulation. Thirdly, five near-resonant Hopf–Hopf bifurcations reveal that the global dynamical scenario becomes much more complex than other cases as k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} decreases. In particular, near the 1:4 resonant Hopf–Hopf interaction occurs when ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}/ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{document} is close to 1:4, which has the most marked effect on wheelset hunting motions and resonances. Finally, the cyclic bifurcation behaviors under the near-resonant conditions indicate the coexistence of multiple limit cycles, and the loop of equilibria and limit cycles detected between two Hopf bifurcation points reveals that the wheelset will perform a cyclical motion in lateral and yaw direction. These results show that the change in frequency ratio induced by the intersection of the lateral and yaw motion of the unbalanced wheelset will greatly affect the hunting motions and resonances of railway vehicles. Therefore, appropriately increasing the value of k22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{22}$$\end{document} is helpful to maintain the vehicle stability.
引用
收藏
页码:1197 / 1215
页数:18
相关论文
共 50 条
  • [1] Hopf-Hopf bifurcation analysis based on resonance and non-resonance in a simplified railway wheelset model
    Guo, Peng
    Huang, Caihong
    Zeng, Jing
    Cao, Hongjun
    NONLINEAR DYNAMICS, 2022, 108 (02) : 1197 - 1215
  • [2] A survey of Hopf bifurcation analysis in nonlinear railway wheelset dynamics
    Sedighi, Hamid M.
    Shirazi, Kourosh H.
    JOURNAL OF VIBROENGINEERING, 2012, 14 (01) : 344 - 351
  • [3] Generalized Hopf bifurcation of a non-smooth railway wheelset system
    Pengcheng Miao
    Denghui Li
    Hebai Chen
    Yuan Yue
    Jianhua Xie
    Nonlinear Dynamics, 2020, 100 : 3277 - 3293
  • [4] Generalized Hopf bifurcation of a non-smooth railway wheelset system
    Miao, Pengcheng
    Li, Denghui
    Chen, Hebai
    Yue, Yuan
    Xie, Jianhua
    NONLINEAR DYNAMICS, 2020, 100 (04) : 3277 - 3293
  • [5] Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and applications
    Jiang, Heping
    Song, Yongli
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 1102 - 1126
  • [6] Parametric resonance of Hopf bifurcation
    Rand, Richard
    Barcilon, Albert
    Morrison, Tina
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 1, Pts A-C, 2005, : 1557 - 1564
  • [7] Parametric resonance of Hopf bifurcation
    Rand, R
    Barcilon, A
    Morrison, T
    NONLINEAR DYNAMICS, 2005, 39 (04) : 411 - 421
  • [8] Parametric Resonance of Hopf Bifurcation
    Richard Rand
    Albert Barcilon
    Tina Morrison
    Nonlinear Dynamics, 2005, 39 : 411 - 421
  • [9] HOPF BIFURCATION FOR MAPS AT A POINT OF RESONANCE
    LEMAIREBODY, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (09): : 727 - 730
  • [10] Parametric resonance and Hopf bifurcation analysis for a MEMS resonator
    van der Avoort, Cas
    van der Hout, Rein
    Hulshof, Joost
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (11) : 913 - 919