Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces

被引:0
|
作者
Youfa Li
Shouzhi Yang
Dehui Yuan
机构
[1] Guangxi University,College of Mathematics and Information Science
[2] University of Macau,Department of Mathematics, Faculty of Science and Technology
[3] Shantou University,Department of Mathematics
[4] Hanshan Normal University,Department of Mathematics
来源
关键词
Bessel property; Dual multiframelet; Sobolev space; Isotropic dilation matrix; Symmetry; 42C15; 94A12;
D O I
暂无
中图分类号
学科分类号
摘要
The dual 2Id-framelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (H^{s}(\mathbb{R}^{d}), H^{-s}(\mathbb{R}^{d})) $\end{document}, s > 0, were introduced by Han and Shen (Constr Approx 29(3):369–406, 2009). In this paper, we systematically study the Bessel property of multiwavelet sequences in Sobolev spaces. The conditions for Bessel multiwavelet sequence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} take great difference from those for Bessel wavelet sequence in this space. Precisely, the Bessel property of multiwavelet sequence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} is not only related to multiwavelets themselves but also to the corresponding refinable function vector. We construct a class of Bessel M-refinable function vectors with M being an isotropic dilation matrix, which have high Sobolev smoothness, and of which the mask symbols have high sum rules. Based on the constructed Bessel refinable function vector, an explicit algorithm is given for dual M-multiframelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (H^{s}(\mathbb{R}^{d}),H^{-s}(\mathbb{R}^{d})) $\end{document} with the multiframelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} having high vanishing moments. On the other hand, based on the dual multiframelets, an algorithm for dual M-multiframelets with symmetry is given. In Section 6, we give an example to illustrate the constructing procedures of dual multiframelets.
引用
收藏
页码:491 / 529
页数:38
相关论文
共 50 条
  • [1] Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces
    Li, Youfa
    Yang, Shouzhi
    Yuan, Dehui
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (03) : 491 - 529
  • [2] Bessel sequences in Sobolev spaces
    Jia, RQ
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) : 298 - 311
  • [3] Multi-Wavelet Bessel Sequences in Sobolev Spaces
    Jianping ZHANG
    Chuanli CAI
    JournalofMathematicalResearchwithApplications, 2018, 38 (05) : 487 - 495
  • [4] Multiwavelet sampling theorem in Sobolev spaces
    LI YouFa 1
    2 College of Mathematics and Information Sciences
    Science China(Mathematics), 2010, 53 (12) : 3197 - 3214
  • [5] Multiwavelet sampling theorem in Sobolev spaces
    Li YouFa
    Yang ShouZhi
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3197 - 3214
  • [6] Multiwavelet sampling theorem in Sobolev spaces
    YouFa Li
    ShouZhi Yang
    Science China Mathematics, 2010, 53 : 3197 - 3214
  • [7] EXTENSION OF BESSEL SEQUENCES TO DUAL FRAMES IN HILBERT SPACES
    Deepshikha
    Vashisht, L. K.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (02): : 71 - 82
  • [8] Dual and canonical dual K-Bessel sequences in quaternionic Hilbert spaces
    Ellouz, Hanen
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [9] Dual and canonical dual K-Bessel sequences in quaternionic Hilbert spaces
    Hanen Ellouz
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [10] Multi-wavelet Bessel sequences in Sobolev spaces in L2(K)
    Ahmed, Ishtaq
    Ahmad, Owais
    Sheikh, Neyaz Ahmad
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 141 - 149