Convergence of measures in forcing extensions

被引:0
|
作者
Damian Sobota
Lyubomyr Zdomskyy
机构
[1] Technische Universität Wien,Institut für Diskrete Mathematik und Geometrie
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if A is a σ-complete Boolean algebra in a model V of set theory and ℙ ∈ V is a proper forcing with the Laver property preserving the ground model reals non-meager, then every pointwise convergent sequence of measures on A is weakly convergent, i.e., A has the Vitali- Hahn-Saks property. This yields a consistent example of a whole class of infinite Boolean algebras with this property and of cardinality strictly smaller than the dominating number ∂. We also obtain a new consistent situation in which there exists an Efimov space.
引用
收藏
页码:501 / 529
页数:28
相关论文
共 50 条
  • [41] Pointwise and Uniform Convergence of Fourier Extensions
    Marcus Webb
    Vincent Coppé
    Daan Huybrechs
    [J]. Constructive Approximation, 2020, 52 : 139 - 175
  • [42] On the convergence of Homeier method and its extensions
    Saeed, K. Muhammed
    Krishnendu, R.
    George, Santhosh
    Padikkal, Jidesh
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (01): : 645 - 656
  • [43] On measures induced by forcing names for ultrafilters
    Borodulin-Nadzieja, Piotr
    Cegielka, Katarzyna
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2023, 323
  • [44] CONVERGENCE TOPOLOGIES FOR MEASURES
    LEADER, S
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04) : 393 - 393
  • [45] On the Convergence of Optimal Measures
    T. Bloom
    L. Bos
    N. Levenberg
    S. Waldron
    [J]. Constructive Approximation, 2010, 32 : 159 - 179
  • [46] ON UNIFORM CONVERGENCE OF MEASURES
    FABIAN, V
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 15 (02): : 139 - &
  • [47] FUZZY MEASURES AND CONVERGENCE
    SQUILLANTE, M
    VENTRE, AGS
    [J]. FUZZY SETS AND SYSTEMS, 1988, 25 (02) : 251 - 257
  • [48] Measures of Tractography Convergence
    Moyer, Daniel C.
    Thompson, Paul
    Ver Steeg, Greg
    [J]. COMPUTATIONAL DIFFUSION MRI (CDMRI 2018), 2019, : 295 - 307
  • [49] Convergence for varying measures
    Di Piazza, L.
    Marraffa, V.
    Musial, K.
    Sambucini, A. R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (02)
  • [50] CONVERGENCE OF GLEASON MEASURES
    JAJTE, R
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (03): : 211 - &