On the Convergence of Optimal Measures

被引:0
|
作者
T. Bloom
L. Bos
N. Levenberg
S. Waldron
机构
[1] University of Toronto,Department of Mathematics
[2] University of Calgary,Department of Mathematics and Statistics
[3] Indiana University,Department of Mathematics
[4] University of Auckland,Department of Mathematics
来源
关键词
Weighted optimal measure; Weighted transfinite diameter; Weighted equilibrium measure; 32U20; 41A63;
D O I
暂无
中图分类号
学科分类号
摘要
Using recent results of Berman and Boucksom (arXiv:0807.0035), we show that for a nonpluripolar compact set K⊂ℂd and an admissible weight function w=e−φ, any sequence of optimal measures converges weak-star to the equilibrium measure μK,φ of (weighted) pluripotential theory for K,φ.
引用
下载
收藏
页码:159 / 179
页数:20
相关论文
共 50 条
  • [1] On the Convergence of Optimal Measures
    Bloom, T.
    Bos, L.
    Levenberg, N.
    Waldron, S.
    CONSTRUCTIVE APPROXIMATION, 2010, 32 (01) : 159 - 179
  • [2] On the convergence of the p-optimal martingale measures to the minimal entropy martingale measure
    Santacroce, M
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (01) : 31 - 54
  • [3] CONVERGENCE TOPOLOGIES FOR MEASURES
    LEADER, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04) : 393 - 393
  • [4] ON UNIFORM CONVERGENCE OF MEASURES
    FABIAN, V
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 15 (02): : 139 - &
  • [5] FUZZY MEASURES AND CONVERGENCE
    SQUILLANTE, M
    VENTRE, AGS
    FUZZY SETS AND SYSTEMS, 1988, 25 (02) : 251 - 257
  • [6] The minimal entropy and the convergence of the p-optimal martingale measures in a general jump model
    Kohlmann, Michael
    Xiong, Dewen
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (05) : 941 - 977
  • [7] Convergence for varying measures
    Di Piazza, L.
    Marraffa, V.
    Musial, K.
    Sambucini, A. R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (02)
  • [8] Measures of Tractography Convergence
    Moyer, Daniel C.
    Thompson, Paul
    Ver Steeg, Greg
    COMPUTATIONAL DIFFUSION MRI (CDMRI 2018), 2019, : 295 - 307
  • [9] CONVERGENCE OF GLEASON MEASURES
    JAJTE, R
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (03): : 211 - &
  • [10] CONVERGENCE OF BAIRE MEASURES
    KIRK, RB
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 49 (01) : 135 - 148