Convergence for varying measures

被引:6
|
作者
Di Piazza, L. [1 ]
Marraffa, V. [1 ]
Musial, K. [2 ]
Sambucini, A. R. [3 ]
机构
[1] Univ Palermo, Dept Math & Comp Sci, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Wroclaw, Inst Math, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[3] Dept Math & Comp Sci, I-06123 Perugia, Italy
关键词
Setwise convergence; Convergence in total variation; Uniform integrability; Absolute integrability; Pettis integral; Multifunction; PETTIS INTEGRABILITY; FATOUS LEMMA; MULTIFUNCTIONS; THEOREMS; VALUES; INTEGRATION; MCSHANE;
D O I
10.1016/j.jmaa.2022.126782
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some limit theorems of the type integral(Omega) f(n) dm(n) -> integral(Omega) f dm are presented for scalar, (vector), (multi)-valued sequences of m(n)-integrable functions f(n). The convergences obtained, in the vector and multivalued settings, are in the weak or in the strong sense. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Convergence for varying measures in the topological case
    Di Piazza, Luisa
    Marraffa, Valeria
    Musial, Kazimierz
    Sambucini, Anna Rita
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 71 - 86
  • [2] Convergence for varying measures in the topological case
    Luisa Di Piazza
    Valeria Marraffa
    Kazimierz Musiał
    Anna Rita Sambucini
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 71 - 86
  • [3] Weak Convergence of Varying Measures and Hermite—Padé Orthogonal Polynomials
    B. de la Calle Ysern
    G. López Lagomasino
    [J]. Constructive Approximation, 1999, 15 : 553 - 575
  • [4] Convergence Theorems for Varying Measures Under Convexity Conditions and Applications
    Marraffa, Valeria
    Satco, Bianca
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
  • [5] Convergence Theorems for Varying Measures Under Convexity Conditions and Applications
    Valeria Marraffa
    Bianca Satco
    [J]. Mediterranean Journal of Mathematics, 2022, 19
  • [6] Epi-Convergence of Expectation Functions under Varying Measures and Integrands
    Feinberg, Eugene A.
    Kasyanov, Pavlo O.
    Royset, Johannes O.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2023, 30 (03) : 917 - 936
  • [7] Weak convergence of varying measures and Hermite-Pade orthogonal polynomials
    Ysern, BD
    Lagomasino, GL
    [J]. CONSTRUCTIVE APPROXIMATION, 1999, 15 (04) : 553 - 575
  • [8] CONVERGENCE TOPOLOGIES FOR MEASURES
    LEADER, S
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04): : 393 - 393
  • [9] ON UNIFORM CONVERGENCE OF MEASURES
    FABIAN, V
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 15 (02): : 139 - &
  • [10] On the Convergence of Optimal Measures
    T. Bloom
    L. Bos
    N. Levenberg
    S. Waldron
    [J]. Constructive Approximation, 2010, 32 : 159 - 179