Photonic-aware neural networks

被引:0
|
作者
Emilio Paolini
Lorenzo De Marinis
Marco Cococcioni
Luca Valcarenghi
Luca Maggiani
Nicola Andriolli
机构
[1] Scuola Superiore Sant’Anna,Institute of Electronics, Computer and Telecommunication Engineering (CNR
[2] National Research Council of Italy,IEIIT)
[3] Sma-RTy Italia Srl,Department of Information Engineering
[4] University of Pisa,undefined
来源
关键词
Photonic neural networks; Analog computations; Effective number of bits; Quantization;
D O I
暂无
中图分类号
学科分类号
摘要
Photonics-based neural networks promise to outperform electronic counterparts, accelerating neural network computations while reducing power consumption and footprint. However, these solutions suffer from physical layer constraints arising from the underlying analog photonic hardware, impacting the resolution of computations (in terms of effective number of bits), requiring the use of positive-valued inputs, and imposing limitations in the fan-in and in the size of convolutional kernels. To abstract these constraints, in this paper we introduce the concept of Photonic-Aware Neural Network (PANN) architectures, i.e., deep neural network models aware of the photonic hardware constraints. Then, we devise PANN training schemes resorting to quantization strategies aimed to obtain the required neural network parameters in the fixed-point domain, compliant with the limited resolution of the underlying hardware. We finally carry out extensive simulations exploiting PANNs in image classification tasks on well-known datasets (MNIST, Fashion-MNIST, and Cifar-10) with varying bitwidths (i.e., 2, 4, and 6 bits). We consider two kernel sizes and two pooling schemes for each PANN model, exploiting 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} and 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} convolutional kernels, and max and average pooling, the latter more amenable to an optical implementation. 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} kernels perform better than 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} counterparts, while max and average pooling provide comparable results, with the latter performing better on MNIST and Cifar-10. The accuracy degradation due to the photonic hardware constraints is quite limited, especially on MNIST and Fashion-MNIST, demonstrating the feasibility of PANN approaches on computer vision tasks.
引用
收藏
页码:15589 / 15601
页数:12
相关论文
共 50 条
  • [31] Spatial Heterophily Aware Graph Neural Networks
    Xiao, Congxi
    Zhou, Jingbo
    Huang, Jizhou
    Xu, Tong
    Xiong, Hui
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2752 - 2763
  • [32] Validation of Photonic Neural Networks in Health Scenarios
    Paolini, E.
    De Marinis, L.
    Contestabile, G.
    Gupta, S.
    Maggiani, L.
    Andriolli, N.
    2023 INTERNATIONAL CONFERENCE ON PHOTONICS IN SWITCHING AND COMPUTING, PSC, 2023,
  • [33] Position-aware Graph Neural Networks
    You, Jiaxuan
    Ying, Rex
    Leskovec, Jure
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [34] Spatially-Aware Context Neural Networks
    Ruan, Dongsheng
    Shi, Yu
    Wen, Jun
    Zheng, Nenggan
    Zheng, Min
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6906 - 6916
  • [35] Autoinverse: Uncertainty Aware Inversion of Neural Networks
    Ansari, Navid
    Seidel, Hans-Peter
    Ferdowsi, Nima Vahidi
    Babaei, Vahid
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [36] A Design Methodology for Energy Aware Neural Networks
    Dabbagh, Mehiar
    Hajj, Hazem
    Chehab, Ali
    El-Hajj, Wassim
    Kayssi, Ayman
    Mansour, Mohammad
    2011 7TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2011, : 1333 - 1340
  • [37] Structure-Aware Convolutional Neural Networks
    Chang, Jianlong
    Gu, Jie
    Wang, Lingfeng
    Meng, Gaofeng
    Xiang, Shiming
    Pan, Chunhong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [38] Identity-aware Graph Neural Networks
    You, Jiaxuan
    Gomes-Selman, Jonathan M.
    Ying, Rex
    Leskovec, Jure
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10737 - 10745
  • [39] Content-aware convolutional neural networks
    Guo, Yong
    Chen, Yaofo
    Tan, Mingkui
    Jia, Kui
    Chen, Jian
    Wang, Jingdong
    NEURAL NETWORKS, 2021, 143 : 657 - 668
  • [40] A Locality Aware Convolutional Neural Networks Accelerator
    Shi, Runbin
    Xu, Zheng
    Sun, Zhihao
    Wu, Di
    Peemen, Maurice
    Li, Ang
    Corporaal, Henk
    2015 EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD), 2015, : 591 - 598