Photonic-aware neural networks

被引:0
|
作者
Emilio Paolini
Lorenzo De Marinis
Marco Cococcioni
Luca Valcarenghi
Luca Maggiani
Nicola Andriolli
机构
[1] Scuola Superiore Sant’Anna,Institute of Electronics, Computer and Telecommunication Engineering (CNR
[2] National Research Council of Italy,IEIIT)
[3] Sma-RTy Italia Srl,Department of Information Engineering
[4] University of Pisa,undefined
来源
关键词
Photonic neural networks; Analog computations; Effective number of bits; Quantization;
D O I
暂无
中图分类号
学科分类号
摘要
Photonics-based neural networks promise to outperform electronic counterparts, accelerating neural network computations while reducing power consumption and footprint. However, these solutions suffer from physical layer constraints arising from the underlying analog photonic hardware, impacting the resolution of computations (in terms of effective number of bits), requiring the use of positive-valued inputs, and imposing limitations in the fan-in and in the size of convolutional kernels. To abstract these constraints, in this paper we introduce the concept of Photonic-Aware Neural Network (PANN) architectures, i.e., deep neural network models aware of the photonic hardware constraints. Then, we devise PANN training schemes resorting to quantization strategies aimed to obtain the required neural network parameters in the fixed-point domain, compliant with the limited resolution of the underlying hardware. We finally carry out extensive simulations exploiting PANNs in image classification tasks on well-known datasets (MNIST, Fashion-MNIST, and Cifar-10) with varying bitwidths (i.e., 2, 4, and 6 bits). We consider two kernel sizes and two pooling schemes for each PANN model, exploiting 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} and 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} convolutional kernels, and max and average pooling, the latter more amenable to an optical implementation. 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} kernels perform better than 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} counterparts, while max and average pooling provide comparable results, with the latter performing better on MNIST and Cifar-10. The accuracy degradation due to the photonic hardware constraints is quite limited, especially on MNIST and Fashion-MNIST, demonstrating the feasibility of PANN approaches on computer vision tasks.
引用
收藏
页码:15589 / 15601
页数:12
相关论文
共 50 条
  • [21] Imperfect Quantum Photonic Neural Networks
    Ewaniuk, Jacob
    Carolan, Jacques
    Shastri, Bhavin J. J.
    Rotenberg, Nir
    ADVANCED QUANTUM TECHNOLOGIES, 2023, 6 (03)
  • [22] Learning with Deep Photonic Neural Networks
    Leelar, Bhawani Shankar
    Shivaleela, E. S.
    Srinivas, T.
    2017 IEEE WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2017,
  • [23] OPTICAL COMPUTING Photonic neural networks
    Woods, Damien
    Naughton, Thomas J.
    NATURE PHYSICS, 2012, 8 (04) : 257 - 259
  • [24] Prospects and applications of photonic neural networks
    Huang, Chaoran
    Sorger, Volker J.
    Miscuglio, Mario
    Al-Qadasi, Mohammed
    Mukherjee, Avilash
    Lampe, Lutz
    Nichols, Mitchell
    Tait, Alexander N.
    Ferreira de Lima, Thomas
    Marquez, Bicky A.
    Wang, Jiahui
    Chrostowski, Lukas
    Fok, Mable P.
    Brunner, Daniel
    Fan, Shanhui
    Shekhar, Sudip
    Prucnal, Paul R.
    Shastri, Bhavin J.
    ADVANCES IN PHYSICS-X, 2022, 7 (01):
  • [25] Silicon Photonic Neural Networks and Applications
    Shastri, B. J.
    Marquez, B. A.
    Tait, A. N.
    de Lima, T. Ferreira
    Peng, H-T
    Huang, C.
    Prucnal, P. R.
    2020 PHOTONICS NORTH (PN), 2020,
  • [26] Photonic Neural Networks and Its Applications
    Chen Bei
    Zhang Zhaoyang
    Dai Tingge
    Yu Hui
    Wang Yuehai
    Yang Jianyi
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (06)
  • [27] A Reliability Concern on Photonic Neural Networks
    Liu, Yinyi
    Zhang, Jiaxu
    Feng, Jun
    Chen, Shixi
    Xu, Jiang
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1059 - 1064
  • [28] Substructure Aware Graph Neural Networks
    Zeng, Dingyi
    Liu, Wanlong
    Chen, Wenyu
    Zhou, Li
    Zhang, Malu
    Qu, Hong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11129 - 11137
  • [29] Control-free and efficient integrated photonic neural networks via hardware-aware training and pruning
    Xu, Tengji
    Zhang, Weipeng
    Zhang, Jiawei
    Luo, Zeyu
    Xiao, Qiarong
    Wang, Benshan
    Luo, Mingcheng
    Xu, Xingyuan
    Shastri, Bhavin J.
    Prucnal, Paul R.
    Huang, Chaoran
    OPTICA, 2024, 11 (08): : 1039 - 1049
  • [30] Online training and pruning of photonic neural networks
    Zhang, Weipeng
    Xu, Tengji
    Zhang, Jiawei
    Shastri, Bhavin J.
    Huang, Chaoran
    Prucnal, Paul
    2023 IEEE PHOTONICS CONFERENCE, IPC, 2023,