Photonic-aware neural networks

被引:0
|
作者
Emilio Paolini
Lorenzo De Marinis
Marco Cococcioni
Luca Valcarenghi
Luca Maggiani
Nicola Andriolli
机构
[1] Scuola Superiore Sant’Anna,Institute of Electronics, Computer and Telecommunication Engineering (CNR
[2] National Research Council of Italy,IEIIT)
[3] Sma-RTy Italia Srl,Department of Information Engineering
[4] University of Pisa,undefined
来源
关键词
Photonic neural networks; Analog computations; Effective number of bits; Quantization;
D O I
暂无
中图分类号
学科分类号
摘要
Photonics-based neural networks promise to outperform electronic counterparts, accelerating neural network computations while reducing power consumption and footprint. However, these solutions suffer from physical layer constraints arising from the underlying analog photonic hardware, impacting the resolution of computations (in terms of effective number of bits), requiring the use of positive-valued inputs, and imposing limitations in the fan-in and in the size of convolutional kernels. To abstract these constraints, in this paper we introduce the concept of Photonic-Aware Neural Network (PANN) architectures, i.e., deep neural network models aware of the photonic hardware constraints. Then, we devise PANN training schemes resorting to quantization strategies aimed to obtain the required neural network parameters in the fixed-point domain, compliant with the limited resolution of the underlying hardware. We finally carry out extensive simulations exploiting PANNs in image classification tasks on well-known datasets (MNIST, Fashion-MNIST, and Cifar-10) with varying bitwidths (i.e., 2, 4, and 6 bits). We consider two kernel sizes and two pooling schemes for each PANN model, exploiting 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} and 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} convolutional kernels, and max and average pooling, the latter more amenable to an optical implementation. 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} kernels perform better than 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} counterparts, while max and average pooling provide comparable results, with the latter performing better on MNIST and Cifar-10. The accuracy degradation due to the photonic hardware constraints is quite limited, especially on MNIST and Fashion-MNIST, demonstrating the feasibility of PANN approaches on computer vision tasks.
引用
收藏
页码:15589 / 15601
页数:12
相关论文
共 50 条
  • [11] CHAMP: Coherent Hardware-Aware Magnitude Pruning of Integrated Photonic Neural Networks
    Banerjee, Sanmitra
    Nikdast, Mahdi
    Pasricha, Sudeep
    Chakrabarty, Krishnendu
    2022 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2022,
  • [12] Photonic Neural Networks Applications
    Shastri, B. J.
    Huang, C.
    Tait, A. N.
    de Lima, T. Ferreira
    Prucnal, P. R.
    2021 PHOTONICS NORTH (PN), 2021,
  • [13] Photonic Neural Networks: A Survey
    De Marinis, Lorenzo
    Cococcioni, Marco
    Castoldi, Piero
    Andriolli, Nicola
    IEEE ACCESS, 2019, 7 : 175827 - 175841
  • [14] Competitive photonic neural networks
    Brunner, Daniel
    Psaltis, Demetri
    NATURE PHOTONICS, 2021, 15 (05) : 323 - 324
  • [15] Competitive photonic neural networks
    Daniel Brunner
    Demetri Psaltis
    Nature Photonics, 2021, 15 : 323 - 324
  • [16] Quantum Photonic Neural Networks
    Steinbrecher, Gregory R.
    Olson, Jonathan P.
    Englund, Dirk
    Carolan, Jacques
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [17] Introduction to Photonic Neural Networks
    Belkin, M. E.
    Shabelnik, K. V.
    NANOBIOTECHNOLOGY REPORTS, 2024, 19 (SUPPL1) : S26 - S31
  • [18] Opportunities for integrated photonic neural networks
    Stark, Pascal
    Horst, Folkert
    Dangel, Roger
    Weiss, Jonas
    Offrein, Bert Jan
    NANOPHOTONICS, 2020, 9 (13) : 4221 - 4232
  • [19] Integrated Photonic Neural Networks: Opportunities and
    Liao, Kun
    Dai, Tianxiang
    Yan, Qiuchen
    Hu, Xiaoyong
    Gong, Qihuang
    ACS PHOTONICS, 2023, 10 (07) : 2001 - 2010
  • [20] Physical Modeling of Photonic Neural Networks
    de Lima, Thomas Ferreira
    Shastri, Bhavin J.
    Nahmias, Mitchell A.
    Tait, Alexander N.
    Prucnal, Paul R.
    2016 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2016, : 222 - 223