Uniform regularity of the compressible full Navier–Stokes–Maxwell system

被引:0
|
作者
Jishan Fan
Fucai Li
Gen Nakamura
机构
[1] Nanjing Forestry University,Department of Applied Mathematics
[2] Nanjing University,Department of Mathematics
[3] Hokkaido University,Department of Mathematics
关键词
Compressible full Navier–Stokes-Maxwell system; Uniform regularity; Non-isentropic Euler–Maxwell system; 76W05; 35Q60; 35B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the uniform regularity of the compressible full Navier–Stokes–Maxwell system in T3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^3$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Global Regularity for the Navier-Stokes-Maxwell System with Fractional Diffusion
    Zaihong Jiang
    Shuyun Zhang
    Mingxuan Zhu
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [22] Scaling invariant regularity criteria for the Navier-Stokes-Maxwell system
    Ma, Caochuan
    Jiang, Zaihong
    Zhu, Mingxuan
    APPLIED MATHEMATICS LETTERS, 2018, 76 : 130 - 134
  • [23] Global existence and regularity of the weakly compressible Navier-Stokes system
    Jiang, Ning
    Levermore, C. David
    ASYMPTOTIC ANALYSIS, 2012, 76 (02) : 61 - 86
  • [24] Regularity of solutions to the Navier-Stokes system for compressible flows on a polygon
    Kweon, JR
    Kellogg, RB
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (06) : 1451 - 1485
  • [25] Critical regularity issues for the compressible Navier–Stokes system in bounded domains
    Raphaël Danchin
    Patrick Tolksdorf
    Mathematische Annalen, 2023, 387 : 1903 - 1959
  • [26] Uniform Regularity for the Navier–Stokes Equation with Navier Boundary Condition
    Nader Masmoudi
    Frédéric Rousset
    Archive for Rational Mechanics and Analysis, 2012, 203 : 529 - 575
  • [27] Uniform regularity for the free surface compressible Navier-Stokes equations with or without surface tension
    Mei, Yu
    Wang, Yong
    Xin, Zhouping
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (02): : 259 - 336
  • [28] Large time behavior of the isentropic compressible Navier-Stokes-Maxwell system
    Chen, Yan
    Li, Fucai
    Zhang, Zhipeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):
  • [29] Energy conservation and conditional regularity for the incompressible Navier-Stokes-Maxwell system
    Ma, Dandan
    Wu, Fan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (37) : 1 - 15
  • [30] Critical regularity issues for the compressible Navier-Stokes system in bounded domains
    Danchin, Raphael
    Tolksdorf, Patrick
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1903 - 1959