Global Regularity for the Navier-Stokes-Maxwell System with Fractional Diffusion

被引:0
|
作者
Zaihong Jiang
Shuyun Zhang
Mingxuan Zhu
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Jiaxing University,Department of Mathematics
关键词
Navier-Stokes-Maxwell system; Fractional diffusion; Global existence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the global regularity for the Navier-Stokes-Maxwell system with fractional diffusion. Existence and uniqueness of global strong solution are proved for α⩾32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \geqslant \frac {3}{2}$\end{document}. When 0 < α < 1, global existence is obtained provided that the initial data ∥u0∥H52−2α+∥E0∥H52−2α+∥B0∥H52−2α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|E_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|B_{0}\|_{H^{\frac {5}{2}-2\alpha }}$\end{document} is sufficiently small. Moreover, when 1<α<32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha <\frac {3}{2}$\end{document}, global existence is obtained if for any ε > 0, the initial data ∥u0∥H32−α+ε+∥E0∥H32−α+ε+∥B0∥H32−α+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|E_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|B_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}$\end{document} is small enough.
引用
收藏
相关论文
共 50 条
  • [1] REGULARITY RESULTS FOR THE NAVIER-STOKES-MAXWELL SYSTEM
    Wen, Zhihong
    Ye, Zhuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (02) : 339 - 358
  • [2] Uniform regularity of the isentropic Navier-Stokes-Maxwell system
    Xiao, Qingkun
    Sun, Jianzhu
    Tang, Tong
    AIMS MATHEMATICS, 2022, 7 (04): : 6694 - 6701
  • [3] Extended Regularity Criteria for the Navier-Stokes-Maxwell system
    Zhang, Zujin
    Pan, Jian
    Qiu, Shulin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2039 - 2046
  • [4] Uniform regularity of the compressible full Navier-Stokes-Maxwell system
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [5] Scaling invariant regularity criteria for the Navier-Stokes-Maxwell system
    Ma, Caochuan
    Jiang, Zaihong
    Zhu, Mingxuan
    APPLIED MATHEMATICS LETTERS, 2018, 76 : 130 - 134
  • [6] GLOBAL SMALL SOLUTIONS FOR THE NAVIER-STOKES-MAXWELL SYSTEM
    Ibrahim, Slim
    Keraani, Sahbi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (05) : 2275 - 2295
  • [7] Energy conservation and conditional regularity for the incompressible Navier-Stokes-Maxwell system
    Ma, Dandan
    Wu, Fan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (37) : 1 - 15
  • [8] Global Regularity for the Napier-Stokes-Maxwell System with Fractional Diffusion
    Jiang, Zaihong
    Zhang, Shuyun
    Zhu, Mingxuan
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2018, 21 (03)
  • [9] Global Existence of Solutions of the Navier-Stokes-Maxwell System in Besov Spaces
    Bai, Haifeng
    Li, Li
    JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (01): : 98 - 110
  • [10] Global smooth flows for compressible Navier-Stokes-Maxwell equations
    Xu, Jiang
    Cao, Hongmei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):