Global Regularity for the Navier-Stokes-Maxwell System with Fractional Diffusion

被引:0
|
作者
Zaihong Jiang
Shuyun Zhang
Mingxuan Zhu
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Jiaxing University,Department of Mathematics
关键词
Navier-Stokes-Maxwell system; Fractional diffusion; Global existence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the global regularity for the Navier-Stokes-Maxwell system with fractional diffusion. Existence and uniqueness of global strong solution are proved for α⩾32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \geqslant \frac {3}{2}$\end{document}. When 0 < α < 1, global existence is obtained provided that the initial data ∥u0∥H52−2α+∥E0∥H52−2α+∥B0∥H52−2α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|E_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|B_{0}\|_{H^{\frac {5}{2}-2\alpha }}$\end{document} is sufficiently small. Moreover, when 1<α<32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha <\frac {3}{2}$\end{document}, global existence is obtained if for any ε > 0, the initial data ∥u0∥H32−α+ε+∥E0∥H32−α+ε+∥B0∥H32−α+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|E_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|B_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}$\end{document} is small enough.
引用
收藏
相关论文
共 50 条
  • [41] Optimal decay rate of the incompressible Navier-Stokes-Maxwell system with Ohm's law
    Tan, Shuxian
    Zhou, Fujun
    Wu, Weijun
    Gong, Weihua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 77
  • [42] SOLUTIONS OF NAVIER-STOKES-MAXWELL SYSTEMS IN LARGE ENERGY SPACES
    Arsenio, Diogo
    Gallagher, Isabelle
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (06) : 3853 - 3884
  • [43] QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE QUANTUM NAVIER-STOKES-MAXWELL EQUATIONS
    Li, Min
    Pu, Xueke
    Wang, Shu
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (02) : 363 - 391
  • [44] LOCAL WELL-POSEDNESS OF THE FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM WITH VACUUM
    Fan, Jishan
    Jia, Yueling
    KINETIC AND RELATED MODELS, 2018, 11 (01) : 97 - 106
  • [45] Global existence and the time decay estimates of solutions to the compressible quantum Navier-Stokes-Maxwell system in R3
    Tong, Leilei
    Luo, Miao
    STUDIES IN APPLIED MATHEMATICS, 2024, 152 (02) : 618 - 647
  • [46] Convergence to Steady-States of Compressible Navier-Stokes-Maxwell Equations
    Feng, Yue-Hong
    Li, Xin
    Mei, Ming
    Wang, Shu
    Cao, Yang-Chen
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (01)
  • [47] Stability of rarefaction wave for isentropic compressible Navier-Stokes-Maxwell equations
    Luo, Fangqi
    Yao, Huancheng
    Zhu, Changjiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [48] Large time behavior of the full compressible Navier-Stokes-Maxwell system with a nonconstant background density
    Li, Xin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 869 - 896
  • [49] CONVERGENCE OF THE FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM TO THE INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN A BOUNDED DOMAIN
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    KINETIC AND RELATED MODELS, 2016, 9 (03) : 443 - 453
  • [50] Uniform Local Well-Posedness to the Density-Dependent Navier-Stokes-Maxwell System
    Jishan Fan
    Fucai Li
    Acta Applicandae Mathematicae, 2014, 133 : 19 - 32