Navier-Stokes-Maxwell system;
Fractional diffusion;
Global existence;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we study the global regularity for the Navier-Stokes-Maxwell system with fractional diffusion. Existence and uniqueness of global strong solution are proved for α⩾32\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\alpha \geqslant \frac {3}{2}$\end{document}. When 0 < α < 1, global existence is obtained provided that the initial data ∥u0∥H52−2α+∥E0∥H52−2α+∥B0∥H52−2α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\|u_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|E_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|B_{0}\|_{H^{\frac {5}{2}-2\alpha }}$\end{document} is sufficiently small. Moreover, when 1<α<32\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$1<\alpha <\frac {3}{2}$\end{document}, global existence is obtained if for any ε > 0, the initial data ∥u0∥H32−α+ε+∥E0∥H32−α+ε+∥B0∥H32−α+ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\|u_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|E_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|B_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}$\end{document} is small enough.
机构:
Chongqing Univ, Sch Math & Stat, Chongqing 401331, Peoples R ChinaChongqing Univ, Sch Math & Stat, Chongqing 401331, Peoples R China
Li, Min
Pu, Xueke
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R ChinaChongqing Univ, Sch Math & Stat, Chongqing 401331, Peoples R China
Pu, Xueke
Wang, Shu
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R ChinaChongqing Univ, Sch Math & Stat, Chongqing 401331, Peoples R China
机构:
Beijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, CanadaBeijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
Feng, Yue-Hong
Li, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Informat Sci & Technol Univ, Coll Sci, Beijing 100192, Peoples R ChinaBeijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
Li, Xin
Mei, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Champlain Coll St Lambert, Dept Math, Quebec City, PQ J4P 3P2, CanadaBeijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
Mei, Ming
Wang, Shu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, CanadaBeijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
Wang, Shu
Cao, Yang-Chen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R ChinaBeijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China