Global Regularity for the Navier-Stokes-Maxwell System with Fractional Diffusion

被引:0
|
作者
Zaihong Jiang
Shuyun Zhang
Mingxuan Zhu
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Jiaxing University,Department of Mathematics
关键词
Navier-Stokes-Maxwell system; Fractional diffusion; Global existence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the global regularity for the Navier-Stokes-Maxwell system with fractional diffusion. Existence and uniqueness of global strong solution are proved for α⩾32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \geqslant \frac {3}{2}$\end{document}. When 0 < α < 1, global existence is obtained provided that the initial data ∥u0∥H52−2α+∥E0∥H52−2α+∥B0∥H52−2α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|E_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|B_{0}\|_{H^{\frac {5}{2}-2\alpha }}$\end{document} is sufficiently small. Moreover, when 1<α<32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha <\frac {3}{2}$\end{document}, global existence is obtained if for any ε > 0, the initial data ∥u0∥H32−α+ε+∥E0∥H32−α+ε+∥B0∥H32−α+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|E_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|B_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}$\end{document} is small enough.
引用
收藏
相关论文
共 50 条
  • [31] GREEN'S FUNCTION AND LARGE TIME BEHAVIOR OF THE NAVIER-STOKES-MAXWELL SYSTEM
    Duan, Renjun
    ANALYSIS AND APPLICATIONS, 2012, 10 (02)
  • [32] Low Mach number limit of the full compressible Navier-Stokes-Maxwell system
    Li, Fucai
    Mu, Yanmin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 334 - 344
  • [33] Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations
    Feng, Yue-Hong
    Peng, Yue-Jun
    Wang, Shu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 : 105 - 116
  • [34] Local well-posedness of the isentropic Navier-Stokes-Maxwell system with vacuum
    Fan, Jishan
    Jing, Lulu
    Nakamura, Gen
    Tang, Tong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5357 - 5368
  • [35] Large time behavior for the non-isentropic Navier-Stokes-Maxwell system
    Liu, Qingqing
    Su, Yifan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (03) : 663 - 679
  • [36] LARGE TIME BEHAVIOR OF SOLUTION FOR THE FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM
    Wang, Weike
    Xu, Xin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (06) : 2283 - 2313
  • [37] Global weak solution to the degenerate quantum Navier-Stokes-Maxwell equations with damping term
    Wang, Guangwu
    Guo, Boling
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (06):
  • [38] Uniform regularity of the compressible full Navier–Stokes–Maxwell system
    Jishan Fan
    Fucai Li
    Gen Nakamura
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [39] GLOBAL CLASSICAL SOLUTIONS TO THE TWO-FLUID INCOMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM WITH OHM'S LAW
    Jiang, Ning
    Luo, Yi-Long
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (02) : 561 - 578
  • [40] Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations
    Zhang, Jie
    Huang, Gaoli
    Wu, Fan
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (10): : 6412 - 6424