Uniform regularity of the compressible full Navier–Stokes–Maxwell system

被引:0
|
作者
Jishan Fan
Fucai Li
Gen Nakamura
机构
[1] Nanjing Forestry University,Department of Applied Mathematics
[2] Nanjing University,Department of Mathematics
[3] Hokkaido University,Department of Mathematics
关键词
Compressible full Navier–Stokes-Maxwell system; Uniform regularity; Non-isentropic Euler–Maxwell system; 76W05; 35Q60; 35B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the uniform regularity of the compressible full Navier–Stokes–Maxwell system in T3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^3$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] Uniform regularity for the compressible Navier-Stokes system with low Mach number in domains with boundaries
    Masmoudi, Nader
    Rousset, Frederic
    Sun, Changzhen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 161 : 166 - 215
  • [12] Stability of Non-constant Equilibrium Solutions for the Full Compressible Navier–Stokes–Maxwell System
    Yue-Hong Feng
    Xin Li
    Shu Wang
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [13] LOCAL WELL-POSEDNESS OF THE FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM WITH VACUUM
    Fan, Jishan
    Jia, Yueling
    KINETIC AND RELATED MODELS, 2018, 11 (01) : 97 - 106
  • [14] Extended Regularity Criteria for the Navier-Stokes-Maxwell system
    Zhang, Zujin
    Pan, Jian
    Qiu, Shulin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2039 - 2046
  • [15] Large time behavior of the full compressible Navier-Stokes-Maxwell system with a nonconstant background density
    Li, Xin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 869 - 896
  • [16] CONVERGENCE OF THE FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM TO THE INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN A BOUNDED DOMAIN
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    KINETIC AND RELATED MODELS, 2016, 9 (03) : 443 - 453
  • [17] SERRIN-TYPE BLOWUP CRITERION FOR FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM WITH VACUUM
    Hou, Xiaofeng
    Zhu, Limei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (01) : 161 - 183
  • [18] Stability of Non-constant Equilibrium Solutions for the Full Compressible Navier-Stokes-Maxwell System
    Feng, Yue-Hong
    Li, Xin
    Wang, Shu
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (01)
  • [19] Uniform regularity for a Keller-Segel-Navier-Stokes system
    Chen, Miaochao
    Lu, Shengqi
    Liu, Qilin
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [20] Large time behavior of the isentropic compressible Navier–Stokes–Maxwell system
    Yan Chen
    Fucai Li
    Zhipeng Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67