Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions

被引:0
|
作者
Tobias Friedrich
Thomas Sauerwald
Alexandre Stauffer
机构
[1] Friedrich-Schiller-Universität Jena,
[2] Max-Planck-Institut für Informatik,undefined
[3] Microsoft Research,undefined
来源
Algorithmica | 2013年 / 67卷
关键词
Random geometric graphs; Diameter; Randomized rumor spreading;
D O I
暂无
中图分类号
学科分类号
摘要
A random geometric graph (RGG) is defined by placing n points uniformly at random in [0,n1/d]d, and joining two points by an edge whenever their Euclidean distance is at most some fixed r. We assume that r is larger than the critical value for the emergence of a connected component with Ω(n) nodes. We show that, with high probability (w.h.p.), for any two connected nodes with a Euclidean distance of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega (\frac{\log n}{r^{d-1}} )$\end{document}, their graph distance is only a constant factor larger than their Euclidean distance. This implies that the diameter of the largest connected component is Θ(n1/d/r) w.h.p. We also prove that the condition on the Euclidean distance above is essentially tight.
引用
收藏
页码:65 / 88
页数:23
相关论文
共 50 条
  • [41] Cross over of recurrence networks to random graphs and random geometric graphs
    RINKU JACOB
    K P HARIKRISHNAN
    R MISRA
    G AMBIKA
    Pramana, 2017, 88
  • [42] On Connectivity Thresholds in Superposition of Random Key Graphs on Random Geometric Graphs
    Krishnan, B. Santhana
    Ganesh, Ayalvadi
    Manjunath, D.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 2389 - +
  • [43] Cross over of recurrence networks to random graphs and random geometric graphs
    Jacob, Rinku
    Harikrishnan, K. P.
    Misra, R.
    Ambika, G.
    PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (02):
  • [44] Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs
    Komjathy, Julia
    Lodewijks, Bas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (03) : 1309 - 1367
  • [45] Random walks on hyperspheres of arbitrary dimensions
    Caillol, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (09): : 3077 - 3083
  • [46] Random graphs with arbitrary clustering and their applications
    Mann, Peter
    Smith, V. Anne
    Mitchell, John B. O.
    Dobson, Simon
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [47] GEOMETRIC CLASSIFICATION OF CONFORMAL ANOMALIES IN ARBITRARY DIMENSIONS
    DESER, S
    SCHWIMMER, A
    PHYSICS LETTERS B, 1993, 309 (3-4) : 279 - 284
  • [48] SPIN FACTORS AND GEOMETRIC PHASES IN ARBITRARY DIMENSIONS
    NOWAK, MA
    RHO, M
    ZAHED, I
    PHYSICS LETTERS B, 1991, 254 (1-2) : 94 - 102
  • [49] The Diameter of Dense Random Regular Graphs
    Shimizu, Nobutaka
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1934 - 1944
  • [50] THE DIAMETER OF CONNECTED COMPONENTS OF RANDOM GRAPHS
    SPIRAKIS, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 246 : 264 - 276