Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions

被引:0
|
作者
Tobias Friedrich
Thomas Sauerwald
Alexandre Stauffer
机构
[1] Friedrich-Schiller-Universität Jena,
[2] Max-Planck-Institut für Informatik,undefined
[3] Microsoft Research,undefined
来源
Algorithmica | 2013年 / 67卷
关键词
Random geometric graphs; Diameter; Randomized rumor spreading;
D O I
暂无
中图分类号
学科分类号
摘要
A random geometric graph (RGG) is defined by placing n points uniformly at random in [0,n1/d]d, and joining two points by an edge whenever their Euclidean distance is at most some fixed r. We assume that r is larger than the critical value for the emergence of a connected component with Ω(n) nodes. We show that, with high probability (w.h.p.), for any two connected nodes with a Euclidean distance of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega (\frac{\log n}{r^{d-1}} )$\end{document}, their graph distance is only a constant factor larger than their Euclidean distance. This implies that the diameter of the largest connected component is Θ(n1/d/r) w.h.p. We also prove that the condition on the Euclidean distance above is essentially tight.
引用
收藏
页码:65 / 88
页数:23
相关论文
共 50 条
  • [21] ON THE DIAMETER OF A CLASS OF RANDOM GRAPHS
    PHILIPS, TK
    TOWSLEY, DF
    WOLF, JK
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (02) : 285 - 288
  • [22] THE DIAMETER OF KPKVB RANDOM GRAPHS
    Muller, Tobias
    Staps, Merlijn
    ADVANCES IN APPLIED PROBABILITY, 2019, 51 (02) : 358 - 377
  • [23] THE DIAMETER OF WEIGHTED RANDOM GRAPHS
    Amini, Hamed
    Lelarge, Marc
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (03): : 1686 - 1727
  • [24] The diameter of inhomogeneous random graphs
    Fraiman, Nicolas
    Mitsche, Dieter
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (02) : 308 - 326
  • [25] On the Diameter of Random Planar Graphs
    Chapuy, Guillaume
    Fusy, Eric
    Gimenez, Omer
    Noy, Marc
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (01): : 145 - 178
  • [26] ON THE DIAMETER OF HYPERBOLIC RANDOM GRAPHS
    Friedrich, Tobias
    Krohmer, Anton
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 1314 - 1334
  • [27] The diameter of sparse random graphs
    Chung, F
    Lu, LY
    ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (04) : 257 - 279
  • [28] The Diameter of Sparse Random Graphs
    Riordan, Oliver
    Wormald, Nicholas
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (5-6): : 835 - 926
  • [29] The diameter of random massive graphs
    Lu, LY
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 912 - 921
  • [30] THE DIAMETER OF RANDOM REGULAR GRAPHS
    BOLLOBAS, B
    DELAVEGA, WF
    COMBINATORICA, 1982, 2 (02) : 125 - 134