The geodesics in Liouville quantum gravity are not Schramm–Loewner evolutions

被引:0
|
作者
Jason Miller
Wei Qian
机构
[1] University of Cambridge,Statistical Laboratory, Center for Mathematical Sciences
来源
关键词
Primary 60D05; Secondary 60J67;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the geodesics associated with any metric generated from Liouville quantum gravity (LQG) which satisfies certain natural hypotheses are necessarily singular with respect to the law of any type of SLEκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SLE}_\kappa $$\end{document}. These hypotheses are satisfied by the LQG metric for γ=8/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =\sqrt{8/3}$$\end{document} constructed by the first author and Sheffield, and subsequent work by Gwynne and the first author has shown that there is a unique metric which satisfies these hypotheses for each γ∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,2)$$\end{document}. As a consequence of our analysis, we also establish certain regularity properties of LQG geodesics which imply, among other things, that they are conformally removable.
引用
收藏
页码:677 / 709
页数:32
相关论文
共 50 条
  • [41] THE SCHRAMM-LOEWNER EQUATION FOR MULTIPLE SLITS
    Roth, Oliver
    Schleissinger, Sebastian
    JOURNAL D ANALYSE MATHEMATIQUE, 2017, 131 : 73 - 99
  • [43] Shortest path and Schramm-Loewner Evolution
    N. Posé
    K. J. Schrenk
    N. A. M. Araújo
    H. J. Herrmann
    Scientific Reports, 4
  • [44] Schramm Loewner evolution with Lie superalgebra symmetry
    Koshida, Shinji
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (20):
  • [45] Baxter permuton and Liouville quantum gravity
    Borga, Jacopo
    Holden, Nina
    Sun, Xin
    Yu, Pu
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 186 (3-4) : 1225 - 1273
  • [46] Spectral Dimension of Liouville Quantum Gravity
    Rhodes, Remi
    Vargas, Vincent
    ANNALES HENRI POINCARE, 2014, 15 (12): : 2281 - 2298
  • [47] LIOUVILLE QUANTUM GRAVITY AS A MATING OF TREES
    Duplantier, Bertrand
    Miller, Jason
    Sheffield, Scott
    ASTERISQUE, 2021, (427) : V - +
  • [48] A distance exponent for Liouville quantum gravity
    Gwynne, Ewain
    Holden, Nina
    Sun, Xin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 173 (3-4) : 931 - 997
  • [49] Diffusion in planar Liouville quantum gravity
    Berestycki, Nathanael
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 947 - 964
  • [50] Liouville quantum gravity metrics are not doubling
    Hughes, Liam
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2024, 29