Shortest path and Schramm-Loewner Evolution

被引:0
|
作者
N. Posé
K. J. Schrenk
N. A. M. Araújo
H. J. Herrmann
机构
[1] Computational Physics for Engineering Materials,Departamento de Física
[2] IfB,undefined
[3] Universidade Federal do Ceará,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss.
引用
收藏
相关论文
共 50 条
  • [1] Shortest path and Schramm-Loewner Evolution
    Pose, N.
    Schrenk, K. J.
    Araujo, N. A. M.
    Herrmann, H. J.
    SCIENTIFIC REPORTS, 2014, 4
  • [2] Oded Schramm and the Schramm-Loewner evolution: In memoriam
    Bharali, Gautam
    Ramadas, T. R.
    CURRENT SCIENCE, 2009, 96 (02): : 297 - 298
  • [3] Numerical Computations for the Schramm-Loewner Evolution
    Tom Kennedy
    Journal of Statistical Physics, 2009, 137 : 839 - 856
  • [4] Watersheds are Schramm-Loewner Evolution Curves
    Daryaei, E.
    Araujo, N. A. M.
    Schrenk, K. J.
    Rouhani, S.
    Herrmann, H. J.
    PHYSICAL REVIEW LETTERS, 2012, 109 (21)
  • [5] Scaling limits and the Schramm-Loewner evolution
    Lawler, Gregory F.
    PROBABILITY SURVEYS, 2011, 8 : 442 - 495
  • [6] A NATURAL PARAMETRIZATION FOR THE SCHRAMM-LOEWNER EVOLUTION
    Lawler, Gregory F.
    Sheffield, Scott
    ANNALS OF PROBABILITY, 2011, 39 (05): : 1896 - 1937
  • [7] Coastlines violate the Schramm-Loewner Evolution
    Abril, Leidy M. L.
    Oliveira, Erneson A.
    Moreira, Andre A.
    Andrade Jr, Jose S.
    Herrmann, Hans J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 653
  • [9] Paths in the minimally weighted path model are incompatible with Schramm-Loewner evolution
    Norrenbrock, C.
    Melchert, O.
    Hartmann, A. K.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [10] Active spanning trees and Schramm-Loewner evolution
    Kassel, Adrien
    Wilson, David B.
    PHYSICAL REVIEW E, 2016, 93 (06)