Shortest path and Schramm-Loewner Evolution

被引:0
|
作者
N. Posé
K. J. Schrenk
N. A. M. Araújo
H. J. Herrmann
机构
[1] Computational Physics for Engineering Materials,Departamento de Física
[2] IfB,undefined
[3] Universidade Federal do Ceará,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss.
引用
收藏
相关论文
共 50 条
  • [41] THE SCHRAMM-LOEWNER EQUATION FOR MULTIPLE SLITS
    Roth, Oliver
    Schleissinger, Sebastian
    JOURNAL D ANALYSE MATHEMATIQUE, 2017, 131 : 73 - 99
  • [42] Schramm-Loewner evolution of the accessible perimeter of isoheight lines of correlated landscapes
    Pose, N.
    Schrenk, K. J.
    Araujo, N. A. M.
    Herrmann, H. J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2018, 29 (01):
  • [43] Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes
    de Castro, C. P.
    Lukovic, M.
    Pompanin, G.
    Andrade, R. F. S.
    Herrmann, H. J.
    SCIENTIFIC REPORTS, 2018, 8
  • [44] SCHRAMM-LOEWNER EVOLUTION IN THE RANDOM SCATTERER HENON-PERCOLATION LANDSCAPES
    Najafi, M. N.
    Tizdast, S.
    Cheraghalizadeh, J.
    ACTA PHYSICA POLONICA B, 2019, 50 (05): : 929 - 942
  • [45] Multiple backward Schramm-Loewner evolution and coupling with Gaussian free field
    Koshida, Shinji
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [46] First-passage-time processes and subordinated Schramm-Loewner evolution
    Nezhadhaghighi, M. Ghasemi
    Rajabpour, M. A.
    Rouhani, S.
    PHYSICAL REVIEW E, 2011, 84 (01)
  • [47] Numerical study on Schramm-Loewner evolution in nonminimal conformal field theories
    Picco, Marco
    Santachiara, Raoul
    PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [48] Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes
    C. P. de Castro
    M. Luković
    G. Pompanin
    R. F. S. Andrade
    H. J. Herrmann
    Scientific Reports, 8
  • [49] Large deviations of Schramm-Loewner evolutions: A survey
    Wang, Yilin
    PROBABILITY SURVEYS, 2022, 19 : 351 - 403
  • [50] Conformal welding problem, flow line problem, and multiple Schramm-Loewner evolution
    Katori, Makoto
    Koshida, Shinji
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)