Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes

被引:0
|
作者
C. P. de Castro
M. Luković
G. Pompanin
R. F. S. Andrade
H. J. Herrmann
机构
[1] Universidade Federal da Bahia,Instituto de Física
[2] Campus Universitário da Federacção,Departamento de Física
[3] Computational Physics for Engineering Materials,undefined
[4] IfB,undefined
[5] ETH Zurich,undefined
[6] Universidade Federal do Ceará,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the fact that many physical landscapes are characterized by long-range height-height correlations that are quantified by the Hurst exponent H, we investigate the statistical properties of the iso-height lines of correlated surfaces in the framework of Schramm-Loewner evolution (SLE). We show numerically that in the continuum limit the external perimeter of a percolating cluster of correlated surfaces with H ∈ [−1, 0] is statistically equivalent to SLE curves. Our results suggest that the external perimeter also retains the Markovian properties, confirmed by the absence of time correlations in the driving function and the fact that the latter is Gaussian distributed for any specific time. We also confirm that for all H the variance of the winding angle grows logarithmically with size.
引用
收藏
相关论文
共 50 条
  • [1] Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes
    de Castro, C. P.
    Lukovic, M.
    Pompanin, G.
    Andrade, R. F. S.
    Herrmann, H. J.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [2] Schramm-Loewner evolution of the accessible perimeter of isoheight lines of correlated landscapes
    Pose, N.
    Schrenk, K. J.
    Araujo, N. A. M.
    Herrmann, H. J.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2018, 29 (01):
  • [3] SCHRAMM-LOEWNER EVOLUTION IN THE RANDOM SCATTERER HENON-PERCOLATION LANDSCAPES
    Najafi, M. N.
    Tizdast, S.
    Cheraghalizadeh, J.
    [J]. ACTA PHYSICA POLONICA B, 2019, 50 (05): : 929 - 942
  • [4] Planar percolation with a glimpse of Schramm-Loewner evolution
    Beffara, Vincent
    Duminil-Copin, Hugo
    [J]. PROBABILITY SURVEYS, 2013, 10 : 1 - 50
  • [5] Loop-erased random walk on a percolation cluster is compatible with Schramm-Loewner evolution
    Daryaei, E.
    [J]. PHYSICAL REVIEW E, 2014, 90 (02):
  • [6] Schramm-Loewner Evolution in 2D Rigidity Percolation
    Javerzat, Nina
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [7] Oded Schramm and the Schramm-Loewner evolution: In memoriam
    Bharali, Gautam
    Ramadas, T. R.
    [J]. CURRENT SCIENCE, 2009, 96 (02): : 297 - 298
  • [8] Observation of Schramm-Loewner evolution on the geometrical clusters of the Ising model
    Najafi, M. N.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [9] Percolation and Schramm-Loewner evolution in the 2D random-field Ising model
    Stevenson, Jacob D.
    Weigel, Martin
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (09) : 1879 - 1882
  • [10] Watersheds are Schramm-Loewner Evolution Curves
    Daryaei, E.
    Araujo, N. A. M.
    Schrenk, K. J.
    Rouhani, S.
    Herrmann, H. J.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (21)