Loop-erased random walk on a percolation cluster is compatible with Schramm-Loewner evolution

被引:2
|
作者
Daryaei, E. [1 ]
机构
[1] Univ Neyshabur, Fac Basic Sci, Dept Phys, Neyshabur, Iran
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 02期
关键词
SELF-AVOIDING WALKS; ANOMALOUS DIFFUSION; CONFORMAL-INVARIANCE; INVASION PERCOLATION; STRONG DISORDER; DOMAIN-WALLS; DIMENSIONS; EXPONENTS; PLANE; SLE;
D O I
10.1103/PhysRevE.90.022129
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the scaling limit of a planar loop-erased random walk (LERW) on the percolation cluster, with occupation probability p >= p(c). We numerically demonstrate that the scaling limit of planar LERWp curves, for all p > p(c), can be described by Schramm-Loewner evolution (SLE) with a single parameter kappa that is close to the normal LERW in a Euclidean lattice. However, our results reveal that the LERW on critical incipient percolation clusters is compatible with SLE, but with another diffusivity coefficient kappa. Several geometrical tests are applied to ascertain this. All calculations are consistent with SLE kappa, where kappa = 1.732 +/- 0.016. This value of the diffusivity coefficient is outside the well-known duality range 2 <= kappa <= 8. We also investigate how the winding angle of the LERWp crosses over from Euclidean to fractal geometry by gradually decreasing the value of the parameter p from 1 to p(c). For finite systems, two crossover exponents and a scaling relation can be derived. This finding should, to some degree, help us understand and predict the existence of conformal invariance in disordered and fractal landscapes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Conditioning Schramm-Loewner evolutions and loop erased random walks
    Bauer, Michel
    Bernard, Denis
    Kennedy, Tom
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [2] The Loewner difference equation and convergence of loop-erased random walk
    Lawler, Gregory F.
    Viklund, Fredrik
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 (01): : 565 - 598
  • [3] The Laplacian-b random walk and the Schramm-Loewner evolution
    Lawler, Gregory F.
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2006, 50 (03) : 701 - 746
  • [4] CONVERGENCE RATES FOR LOOP-ERASED RANDOM WALK AND OTHER LOEWNER CURVES
    Viklund, Fredrik Johansson
    [J]. ANNALS OF PROBABILITY, 2015, 43 (01): : 119 - 165
  • [5] Loop-erased random walk on a percolation cluster: Crossover from Euclidean to fractal geometry
    Daryaei, E.
    Rouhani, S.
    [J]. PHYSICAL REVIEW E, 2014, 89 (06):
  • [6] Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes
    de Castro, C. P.
    Lukovic, M.
    Pompanin, G.
    Andrade, R. F. S.
    Herrmann, H. J.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [7] SCHRAMM-LOEWNER EVOLUTION IN THE RANDOM SCATTERER HENON-PERCOLATION LANDSCAPES
    Najafi, M. N.
    Tizdast, S.
    Cheraghalizadeh, J.
    [J]. ACTA PHYSICA POLONICA B, 2019, 50 (05): : 929 - 942
  • [8] Planar percolation with a glimpse of Schramm-Loewner evolution
    Beffara, Vincent
    Duminil-Copin, Hugo
    [J]. PROBABILITY SURVEYS, 2013, 10 : 1 - 50
  • [9] Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes
    C. P. de Castro
    M. Luković
    G. Pompanin
    R. F. S. Andrade
    H. J. Herrmann
    [J]. Scientific Reports, 8
  • [10] Loop-erased random walk on the Sierpinski gasket
    Hattori, Kumiko
    Mizuno, Michiaki
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 566 - 585