The geodesics in Liouville quantum gravity are not Schramm–Loewner evolutions

被引:0
|
作者
Jason Miller
Wei Qian
机构
[1] University of Cambridge,Statistical Laboratory, Center for Mathematical Sciences
来源
关键词
Primary 60D05; Secondary 60J67;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the geodesics associated with any metric generated from Liouville quantum gravity (LQG) which satisfies certain natural hypotheses are necessarily singular with respect to the law of any type of SLEκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SLE}_\kappa $$\end{document}. These hypotheses are satisfied by the LQG metric for γ=8/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =\sqrt{8/3}$$\end{document} constructed by the first author and Sheffield, and subsequent work by Gwynne and the first author has shown that there is a unique metric which satisfies these hypotheses for each γ∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,2)$$\end{document}. As a consequence of our analysis, we also establish certain regularity properties of LQG geodesics which imply, among other things, that they are conformally removable.
引用
收藏
页码:677 / 709
页数:32
相关论文
共 50 条
  • [21] LIOUVILLE QUANTUM GRAVITY AND THE BROWNIAN MAP II: GEODESICS AND CONTINUITY OF THE EMBEDDING
    Miller, Jason
    Sheffield, Scott
    ANNALS OF PROBABILITY, 2021, 49 (06): : 2732 - 2829
  • [22] Three-dimensional gravity and Schramm-Loewner evolution
    Zhou, Jing
    Leng, Xiaoling
    CANADIAN JOURNAL OF PHYSICS, 2023, 101 (10) : 532 - 535
  • [23] Regularity of Schramm-Loewner evolutions, annular crossings, and rough path theory
    Werness, Brent M.
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 21
  • [25] Stochastic geometry of critical curves, Schramm-Loewner evolutions and conformal field theory
    Gruzberg, Ilya A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (41): : 12601 - 12655
  • [26] Oded Schramm and the Schramm-Loewner evolution: In memoriam
    Bharali, Gautam
    Ramadas, T. R.
    CURRENT SCIENCE, 2009, 96 (02): : 297 - 298
  • [27] Liouville quantum gravity
    Li, Songyuan
    Toumbas, Nicolaos
    Troost, Jan
    NUCLEAR PHYSICS B, 2020, 952
  • [28] Liouville quantum gravity and KPZ
    Bertrand Duplantier
    Scott Sheffield
    Inventiones mathematicae, 2011, 185 : 333 - 393
  • [29] Liouville quantum gravity and KPZ
    Duplantier, Bertrand
    Sheffield, Scott
    INVENTIONES MATHEMATICAE, 2011, 185 (02) : 333 - 393
  • [30] Liouville quantum gravity on the annulus
    Remy, Guillaume
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)