Sparsest cut in planar graphs, maximum concurrent flows and their connections with the max-cut problem

被引:0
|
作者
Mourad Baïou
Francisco Barahona
机构
[1] CNRS,
[2] and Université Clermont Auvergne,undefined
[3] UCA,undefined
[4] IBM T. J. Watson Research Center,undefined
来源
Mathematical Programming | 2018年 / 172卷
关键词
Sparsest cut; Maximum concurrent flow; Planar graphs; Max-cut; 90C27 Combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We study the sparsest cut problem when the “capacity-demand” graph is planar, and give a combinatorial polynomial algorithm. In this type of graphs there is an edge for each positive capacity and also an edge for each positive demand. We extend this result to graphs with no K5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_5$$\end{document} minor. We also show how to find a maximum concurrent flow in these two cases. We also prove that the sparsest cut problem is NP-hard if we only impose that the “capacity-demand” graph has no K6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_6$$\end{document} minor. We use ideas that had been developed for the max-cut problem, and show how to exploit the connections among these problems.
引用
收藏
页码:59 / 75
页数:16
相关论文
共 50 条
  • [21] ALGORITHMS FOR A CLASS OF MIN-CUT AND MAX-CUT PROBLEM
    GONZALEZ, TF
    MURAYAMA, T
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 650 : 97 - 105
  • [22] An exact algorithm for MAX-CUT in sparse graphs
    Della Croce, F.
    Kaminski, M. J.
    Paschos, V. Th.
    OPERATIONS RESEARCH LETTERS, 2007, 35 (03) : 403 - 408
  • [23] Fixed-parameter algorithms for the weighted Max-Cut problem on embedded 1-planar graphs
    Dahn, Christine
    Kriege, Nils M.
    Mutzel, Petra
    Schilling, Julian
    THEORETICAL COMPUTER SCIENCE, 2021, 852 : 172 - 184
  • [24] A hierarchical social metaheuristic for the Max-Cut problem
    Duarte, A
    Fernández, F
    Sánchez, A
    Sanz, A
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2004, 3004 : 84 - 94
  • [25] Cutting plane algorithm for the max-cut problem
    de Simone, C.
    Rinaldi, G.
    Optimization Methods and Software, 1994, 3 (1-3) : 195 - 214
  • [26] Advanced Scatter Search for the Max-Cut Problem
    Marti, Rafael
    Duarte, Abraham
    Laguna, Manuel
    INFORMS JOURNAL ON COMPUTING, 2009, 21 (01) : 26 - 38
  • [27] NODE AND EDGE RELAXATIONS OF THE MAX-CUT PROBLEM
    POLJAK, S
    RENDL, F
    COMPUTING, 1994, 52 (02) : 123 - 137
  • [28] Breakout Local Search for the Max-Cut problem
    Benlic, Una
    Hao, Jin-Kao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (03) : 1162 - 1173
  • [29] On greedy construction heuristics for the MAX-CUT problem
    Kahruman, Sera
    Kolotoglu, Elif
    Butenko, Sergiy
    Hicks, Illya V.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2007, 3 (03) : 211 - 218
  • [30] Branch and Cut based on the volume algorithm:: Steiner trees in graphs and Max-cut
    Barahona, Francisco
    Ladanyi, Laszlo
    RAIRO-OPERATIONS RESEARCH, 2006, 40 (01) : 53 - 73