On greedy construction heuristics for the MAX-CUT problem

被引:43
|
作者
Kahruman, Sera [1 ]
Kolotoglu, Elif [1 ]
Butenko, Sergiy [1 ]
Hicks, Illya V. [2 ]
机构
[1] Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77843 USA
[2] Rice Univ, Computat & Appl Math, Houston, TX 77005 USA
关键词
MAX-CUT problem; graph theory; heuristics; approximation algorithms;
D O I
10.1504/IJCSE.2007.017827
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given a graph with non-negative edge weights, the MAX-CUT problem is to partition the set of vertices into two subsets so that the sum of the weights of edges with endpoints in different subsets is maximised. This classical NP-hard problem finds applications in VLSI design, statistical physics, and classification among other fields. This paper compares the performance of several greedy construction heuristics for MAX-CUT problem. In particular, a new 'worst-out' approach is studied and the proposed edge contraction heuristic is shown to have an approximation ratio of at least 1/3. The results of experimental comparison of the worst-out approach, the well-known best-in algorithm, and modifications for both are also included.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 50 条
  • [1] Randomized heuristics for the MAX-CUT problem
    Festa, P
    Pardalos, PM
    Resende, MGC
    Ribeiro, CC
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (06): : 1033 - 1058
  • [2] Lagrangian Smoothing Heuristics for Max-Cut
    Hernán Alperin
    Ivo Nowak
    [J]. Journal of Heuristics, 2005, 11 : 447 - 463
  • [3] Lagrangian smoothing heuristics for Max-Cut
    Alperin, H
    Nowak, I
    [J]. JOURNAL OF HEURISTICS, 2005, 11 (5-6) : 447 - 463
  • [4] Greedy Differencing Edge-Contraction heuristic for the Max-Cut problem
    Hassin, Refael
    Leshenko, Nikita
    [J]. OPERATIONS RESEARCH LETTERS, 2021, 49 (03) : 320 - 325
  • [5] EIGENVALUES AND THE MAX-CUT PROBLEM
    MOHAR, B
    POLJAK, S
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1990, 40 (02) : 343 - 352
  • [6] A memetic algorithm for the max-cut problem
    Lin, Geng
    Zhu, Wenxing
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (01) : 69 - 77
  • [7] A continuation algorithm for max-cut problem
    Xu, Feng Min
    Xu, Cheng Xian
    Li, Xing Si
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (07) : 1257 - 1264
  • [8] A Continuation Algorithm for Max-Cut Problem
    Feng Min XU
    Cheng Xian XU
    Xing Si LI
    [J]. Acta Mathematica Sinica,English Series, 2007, 23 (07) : 1257 - 1264
  • [9] A Continuation Algorithm for Max-Cut Problem
    Feng Min Xu
    Cheng Xian Xu
    Xing Si Li
    [J]. Acta Mathematica Sinica, English Series, 2007, 23 : 1257 - 1264
  • [10] Semi-Supervised Learning Using Greedy Max-Cut
    Wang, Jun
    Jebara, Tony
    Chang, Shih-Fu
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 771 - 800