Lagrangian smoothing heuristics for Max-Cut

被引:13
|
作者
Alperin, H [1 ]
Nowak, I [1 ]
机构
[1] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
关键词
semidefinite programming; quadratic programming; combinatorial optimization; non-convex programming; approximation methods and heuristics; pathfollowing;
D O I
10.1007/s10732-005-3603-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a smoothing heuristic for an NP-hard combinatorial problem. Starting with a convex Lagrangian relaxation, a pathfollowing method is applied to obtain good solutions while gradually transforming the relaxed problem into the original problem formulated with an exact penalty function. Starting points are drawn using different sampling techniques that use randomization and eigenvectors. The dual point that defines the convex relaxation is computed via eigenvalue optimization using subgradient techniques. The proposed method turns out to be competitive with the most recent ones. The idea presented here is generic and can be generalized to all box-constrained problems where convex Lagrangian relaxation can be applied. Furthermore, to the best of our knowledge, this is the first time that a Lagrangian heuristic is combined with pathfollowing techniques.
引用
收藏
页码:447 / 463
页数:17
相关论文
共 50 条
  • [1] Lagrangian Smoothing Heuristics for Max-Cut
    Hernán Alperin
    Ivo Nowak
    [J]. Journal of Heuristics, 2005, 11 : 447 - 463
  • [2] An efficient Lagrangian smoothing heuristic for Max-Cut
    Yong Xia
    Zi Xu
    [J]. Indian Journal of Pure and Applied Mathematics, 2010, 41 : 683 - 700
  • [3] AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC FOR MAX-CUT
    Xia, Yong
    Xu, Zi
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2010, 41 (05): : 683 - 700
  • [4] Randomized heuristics for the MAX-CUT problem
    Festa, P
    Pardalos, PM
    Resende, MGC
    Ribeiro, CC
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (06): : 1033 - 1058
  • [5] On greedy construction heuristics for the MAX-CUT problem
    Kahruman, Sera
    Kolotoglu, Elif
    Butenko, Sergiy
    Hicks, Illya V.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2007, 3 (03) : 211 - 218
  • [6] What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO
    Dunning, Iain
    Gupta, Swati
    Silberholz, John
    [J]. INFORMS JOURNAL ON COMPUTING, 2018, 30 (03) : 608 - 624
  • [7] Graphs with a small max-cut
    Delorme, C
    Favaron, O
    [J]. UTILITAS MATHEMATICA, 1999, 56 : 153 - 165
  • [8] Semidefinite relaxations for max-cut
    Laurent, M
    [J]. THE SHARPEST CUT: THE IMPACT OF MANFRED PADBERG AND HIS WORK, 2004, 4 : 257 - 290
  • [9] MAX-CUT IN CIRCULANT GRAPHS
    POLJAK, S
    TURZIK, D
    [J]. DISCRETE MATHEMATICS, 1992, 108 (1-3) : 379 - 392
  • [10] Rank-two relaxation heuristics for MAX-CUT and other binary quadratic programs
    Burer, S
    Monteiro, RDC
    Zhang, Y
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (02) : 503 - 521