Sparsest cut in planar graphs, maximum concurrent flows and their connections with the max-cut problem

被引:0
|
作者
Mourad Baïou
Francisco Barahona
机构
[1] CNRS,
[2] and Université Clermont Auvergne,undefined
[3] UCA,undefined
[4] IBM T. J. Watson Research Center,undefined
来源
Mathematical Programming | 2018年 / 172卷
关键词
Sparsest cut; Maximum concurrent flow; Planar graphs; Max-cut; 90C27 Combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We study the sparsest cut problem when the “capacity-demand” graph is planar, and give a combinatorial polynomial algorithm. In this type of graphs there is an edge for each positive capacity and also an edge for each positive demand. We extend this result to graphs with no K5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_5$$\end{document} minor. We also show how to find a maximum concurrent flow in these two cases. We also prove that the sparsest cut problem is NP-hard if we only impose that the “capacity-demand” graph has no K6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_6$$\end{document} minor. We use ideas that had been developed for the max-cut problem, and show how to exploit the connections among these problems.
引用
收藏
页码:59 / 75
页数:16
相关论文
共 50 条
  • [41] A novel formulation of the max-cut problem and related algorithm
    Yang, Qingzhi
    Li, Yiyong
    Huang, Pengfei
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 371
  • [42] A discrete dynamic convexized method for the max-cut problem
    Lin, Geng
    Zhu, Wenxing
    ANNALS OF OPERATIONS RESEARCH, 2012, 196 (01) : 371 - 390
  • [43] NP-hardness of the Euclidean Max-Cut problem
    Ageev, A. A.
    Kel'manov, A. V.
    Pyatkin, A. V.
    DOKLADY MATHEMATICS, 2014, 89 (03) : 343 - 345
  • [44] Max-Cut Problem Implementation and Analysis on a Quantum Computer
    Verghese, Ayaan
    Byron, David
    Amann, Andreas
    Popovici, Emanuel
    2022 33RD IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2022,
  • [45] An ant colony algorithm for solving Max-cut problem
    Gao, Lin
    Zeng, Yan
    Dong, Anguo
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (09) : 1173 - 1178
  • [46] Solving the Max-Cut Problem using Semidefinite Optimization
    Orkia, Derkaoui
    Ahmed, Lehireche
    2016 4TH IEEE INTERNATIONAL COLLOQUIUM ON INFORMATION SCIENCE AND TECHNOLOGY (CIST), 2016, : 768 - 772
  • [47] A NOTE ON LINE DIGRAPHS AND THE DIRECTED MAX-CUT PROBLEM
    CHVATAL, V
    EBENEGGER, C
    DISCRETE APPLIED MATHEMATICS, 1990, 29 (2-3) : 165 - 170
  • [48] NP-hardness of the Euclidean Max-Cut problem
    A. A. Ageev
    A. V. Kel’manov
    A. V. Pyatkin
    Doklady Mathematics, 2014, 89 : 343 - 345
  • [49] A discrete dynamic convexized method for the max-cut problem
    Geng Lin
    Wenxing Zhu
    Annals of Operations Research, 2012, 196 : 371 - 390
  • [50] One-third-integrality in the max-cut problem
    Laurent, M
    Poljak, S
    MATHEMATICAL PROGRAMMING, 1995, 71 (01) : 29 - 50