Sparsest cut in planar graphs, maximum concurrent flows and their connections with the max-cut problem

被引:0
|
作者
Mourad Baïou
Francisco Barahona
机构
[1] CNRS,
[2] and Université Clermont Auvergne,undefined
[3] UCA,undefined
[4] IBM T. J. Watson Research Center,undefined
来源
Mathematical Programming | 2018年 / 172卷
关键词
Sparsest cut; Maximum concurrent flow; Planar graphs; Max-cut; 90C27 Combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We study the sparsest cut problem when the “capacity-demand” graph is planar, and give a combinatorial polynomial algorithm. In this type of graphs there is an edge for each positive capacity and also an edge for each positive demand. We extend this result to graphs with no K5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_5$$\end{document} minor. We also show how to find a maximum concurrent flow in these two cases. We also prove that the sparsest cut problem is NP-hard if we only impose that the “capacity-demand” graph has no K6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_6$$\end{document} minor. We use ideas that had been developed for the max-cut problem, and show how to exploit the connections among these problems.
引用
收藏
页码:59 / 75
页数:16
相关论文
共 50 条
  • [1] Sparsest cut in planar graphs, maximum concurrent flows and their connections with the max-cut problem
    Baiou, Mourad
    Barahona, Francisco
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 59 - 75
  • [2] Sparsest Cut in Planar Graphs, Maximum Concurrent Flows and Their Connections with the Max-Cut Problem
    Baiou, Mourad
    Barahona, Francisco
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 63 - 76
  • [3] Graphs with a small max-cut
    Delorme, C
    Favaron, O
    UTILITAS MATHEMATICA, 1999, 56 : 153 - 165
  • [4] MAX-CUT IN CIRCULANT GRAPHS
    POLJAK, S
    TURZIK, D
    DISCRETE MATHEMATICS, 1992, 108 (1-3) : 379 - 392
  • [5] A probabilistic result for the max-cut problem on random graphs
    Beck, A
    Teboulle, M
    OPERATIONS RESEARCH LETTERS, 2000, 27 (05) : 209 - 214
  • [6] Partitioning planar graphs: a fast combinatorial approach for max-cut
    F. Liers
    G. Pardella
    Computational Optimization and Applications, 2012, 51 : 323 - 344
  • [7] Partitioning planar graphs: a fast combinatorial approach for max-cut
    Liers, F.
    Pardella, G.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (01) : 323 - 344
  • [8] On the max-cut of sparse random graphs
    Gamarnik, David
    Li, Quan
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (02) : 219 - 262
  • [9] EIGENVALUES AND THE MAX-CUT PROBLEM
    MOHAR, B
    POLJAK, S
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1990, 40 (02) : 343 - 352
  • [10] MAX-CUT on Samplings of Dense Graphs
    Fakcharoenphol, Jittat
    Vajanopath, Phanu
    2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,