A probabilistic result for the max-cut problem on random graphs

被引:0
|
作者
Beck, A [1 ]
Teboulle, M [1 ]
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, Sch Math Sci, IL-69978 Ramat Aviv, Israel
关键词
probabilistic analysis; maximum cut; eigenvalues of random matrices;
D O I
10.1016/S0167-6377(00)00055-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the max-cut problem on a random graph G with n vertices and weights w(ij) being independent bounded random variables with the same fixed positive expectation mu and variance sigma (2). It is well known that the max-cut number mc(G) always exceeds 1/2 Sigma (i <j)w(ij). We prove that with probability greater than p(n), the max-cut number satisfies 1/2 Sigma (i <j)w(ij)less than or equal to mc(G)less than or equal toq(n)(1/2 Sigma (i <j)w(ij)). where p(n),q(n) are explicitly expressed in terms of the problem's data and such that p(n),q(n) approach 1 as n --> infinity. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条