A probabilistic result for the max-cut problem on random graphs

被引:0
|
作者
Beck, A [1 ]
Teboulle, M [1 ]
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, Sch Math Sci, IL-69978 Ramat Aviv, Israel
关键词
probabilistic analysis; maximum cut; eigenvalues of random matrices;
D O I
10.1016/S0167-6377(00)00055-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the max-cut problem on a random graph G with n vertices and weights w(ij) being independent bounded random variables with the same fixed positive expectation mu and variance sigma (2). It is well known that the max-cut number mc(G) always exceeds 1/2 Sigma (i <j)w(ij). We prove that with probability greater than p(n), the max-cut number satisfies 1/2 Sigma (i <j)w(ij)less than or equal to mc(G)less than or equal toq(n)(1/2 Sigma (i <j)w(ij)). where p(n),q(n) are explicitly expressed in terms of the problem's data and such that p(n),q(n) approach 1 as n --> infinity. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
  • [41] A discrete dynamic convexized method for the max-cut problem
    Lin, Geng
    Zhu, Wenxing
    [J]. ANNALS OF OPERATIONS RESEARCH, 2012, 196 (01) : 371 - 390
  • [42] Partitioning planar graphs: a fast combinatorial approach for max-cut
    F. Liers
    G. Pardella
    [J]. Computational Optimization and Applications, 2012, 51 : 323 - 344
  • [43] A NOTE ON LINE DIGRAPHS AND THE DIRECTED MAX-CUT PROBLEM
    CHVATAL, V
    EBENEGGER, C
    [J]. DISCRETE APPLIED MATHEMATICS, 1990, 29 (2-3) : 165 - 170
  • [44] NP-hardness of the Euclidean Max-Cut problem
    A. A. Ageev
    A. V. Kel’manov
    A. V. Pyatkin
    [J]. Doklady Mathematics, 2014, 89 : 343 - 345
  • [45] Solving the Max-Cut Problem using Semidefinite Optimization
    Orkia, Derkaoui
    Ahmed, Lehireche
    [J]. 2016 4TH IEEE INTERNATIONAL COLLOQUIUM ON INFORMATION SCIENCE AND TECHNOLOGY (CIST), 2016, : 768 - 772
  • [46] One-third-integrality in the max-cut problem
    Laurent, M
    Poljak, S
    [J]. MATHEMATICAL PROGRAMMING, 1995, 71 (01) : 29 - 50
  • [47] A discrete dynamic convexized method for the max-cut problem
    Geng Lin
    Wenxing Zhu
    [J]. Annals of Operations Research, 2012, 196 : 371 - 390
  • [48] A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs
    Dahn, Christine
    Kriege, Nils M.
    Mutzel, Petra
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2018, 2018, 10979 : 141 - 152
  • [49] Max-Cut Problem Implementation and Analysis on a Quantum Computer
    Verghese, Ayaan
    Byron, David
    Amann, Andreas
    Popovici, Emanuel
    [J]. 2022 33RD IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2022,
  • [50] MAX-CUT has a randomized approximation scheme in dense graphs
    delaVega, WF
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1996, 8 (03) : 187 - 198