Gauge Theory on Noncommutative Riemannian Principal Bundles

被引:0
|
作者
Branimir Ćaćić
Bram Mesland
机构
[1] University of New Brunswick,Department of Mathematics and Statistics
[2] Leiden University,Mathematical Institute
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a new, general approach to gauge theory on principal G-spectral triples, where G is a compact connected Lie group. We introduce a notion of vertical Riemannian geometry for G-C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras and prove that the resulting noncommutative orbitwise family of Kostant’s cubic Dirac operators defines a natural unbounded KKG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$KK^G$$\end{document}-cycle in the case of a principal G-action. Then, we introduce a notion of principal G-spectral triple and prove, in particular, that any such spectral triple admits a canonical factorisation in unbounded KKG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$KK^G$$\end{document}-theory with respect to such a cycle: up to a remainder, the total geometry is the twisting of the basic geometry by a noncommutative superconnection encoding the vertical geometry and underlying principal connection. Using these notions, we formulate an approach to gauge theory that explicitly generalises the classical case up to a groupoid cocycle and is compatible in general with this factorisation; in the unital case, it correctly yields a real affine space of noncommutative principal connections with affine gauge action. Our definitions cover all locally compact classical principal G-bundles and are compatible with θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-deformation; in particular, they cover the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-deformed quaternionic Hopf fibration C∞(Sθ7)↩C∞(Sθ4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty (S^7_\theta ) \hookleftarrow C^\infty (S^4_\theta )$$\end{document} as a noncommutative principal SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{SU}\,}}(2)$$\end{document}-bundle.
引用
收藏
页码:107 / 198
页数:91
相关论文
共 50 条
  • [1] Gauge Theory on Noncommutative Riemannian Principal Bundles
    Cacic, Branimir
    Mesland, Bram
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 107 - 198
  • [2] Gauge Theory Without Principal Fiber Bundles
    Gomes, Henrique
    PHILOSOPHY OF SCIENCE, 2024,
  • [3] An Atiyah Sequence for Noncommutative Principal Bundles
    Schwieger, Kay
    Wagner, Stefan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [4] Geometry of noncommutative algebraic principal bundles
    Sharygin G.I.
    Journal of Mathematical Sciences, 2006, 134 (2) : 1911 - 1982
  • [5] Noncommutative Principal Bundles Through Twist Deformation
    Aschieri, Paolo
    Bieliavsky, Pierre
    Pagani, Chiara
    Schenkel, Alexander
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 352 (01) : 287 - 344
  • [6] A geometric approach to noncommutative principal torus bundles
    Wagner, Stefan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 : 1179 - 1222
  • [7] Noncommutative Principal Bundles Through Twist Deformation
    Paolo Aschieri
    Pierre Bieliavsky
    Chiara Pagani
    Alexander Schenkel
    Communications in Mathematical Physics, 2017, 352 : 287 - 344
  • [8] Lifting spectral triples to noncommutative principal bundles
    Schwieger, Kay
    Wagner, Stefan
    ADVANCES IN MATHEMATICS, 2022, 396
  • [9] DIRAC OPERATORS ON NONCOMMUTATIVE PRINCIPAL CIRCLE BUNDLES
    Dabrowski, Ludwik
    Sitarz, Andrzej
    Zucca, Alessandro
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (01)
  • [10] Noncommutative induced gauge theory
    A. de Goursac
    J.-C. Wallet
    R. Wulkenhaar
    The European Physical Journal C, 2007, 51 : 977 - 987