Gauge Theory on Noncommutative Riemannian Principal Bundles

被引:0
|
作者
Branimir Ćaćić
Bram Mesland
机构
[1] University of New Brunswick,Department of Mathematics and Statistics
[2] Leiden University,Mathematical Institute
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a new, general approach to gauge theory on principal G-spectral triples, where G is a compact connected Lie group. We introduce a notion of vertical Riemannian geometry for G-C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras and prove that the resulting noncommutative orbitwise family of Kostant’s cubic Dirac operators defines a natural unbounded KKG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$KK^G$$\end{document}-cycle in the case of a principal G-action. Then, we introduce a notion of principal G-spectral triple and prove, in particular, that any such spectral triple admits a canonical factorisation in unbounded KKG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$KK^G$$\end{document}-theory with respect to such a cycle: up to a remainder, the total geometry is the twisting of the basic geometry by a noncommutative superconnection encoding the vertical geometry and underlying principal connection. Using these notions, we formulate an approach to gauge theory that explicitly generalises the classical case up to a groupoid cocycle and is compatible in general with this factorisation; in the unital case, it correctly yields a real affine space of noncommutative principal connections with affine gauge action. Our definitions cover all locally compact classical principal G-bundles and are compatible with θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-deformation; in particular, they cover the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-deformed quaternionic Hopf fibration C∞(Sθ7)↩C∞(Sθ4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty (S^7_\theta ) \hookleftarrow C^\infty (S^4_\theta )$$\end{document} as a noncommutative principal SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{SU}\,}}(2)$$\end{document}-bundle.
引用
收藏
页码:107 / 198
页数:91
相关论文
共 50 条
  • [21] Quantum principal bundles and corresponding gauge theories
    Durdevic, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (06): : 2027 - 2054
  • [22] INVARIANT GAUGE AUTOMORPHISMS OF HOMOGENEOUS PRINCIPAL BUNDLES
    LAQUER, HT
    GEOMETRIAE DEDICATA, 1990, 33 (01) : 27 - 35
  • [23] The gauge group of a noncommutative principal bundle and twist deformations
    Aschieri, Paolo
    Landi, Giovanni
    Pagani, Chiara
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (04) : 1501 - 1559
  • [24] Principal ∞-bundles: general theory
    Nikolaus, Thomas
    Schreiber, Urs
    Stevenson, Danny
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2015, 10 (04) : 749 - 801
  • [25] Noncommutative generalization of SU(n)-principal fiber bundles: a review
    Masson, T.
    INTERNATIONAL CONFERENCE ON NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2008, 103
  • [26] Induced gauge theory on a noncommutative space
    Grosse, H.
    Wohlgenannt, M.
    EUROPEAN PHYSICAL JOURNAL C, 2007, 52 (02): : 435 - 450
  • [27] Holographic complexity and noncommutative gauge theory
    Couch, Josiah
    Eccles, Stefan
    Fischler, Willy
    Xiao, Ming-Lei
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [28] Gauge Theory on a Discrete Noncommutative Space
    Liangzhong Hu
    Adonai S. Sant'Anna
    International Journal of Theoretical Physics, 2003, 42 : 635 - 647
  • [29] Dynamics of strings in noncommutative gauge theory
    Gross, DJ
    Nekrasov, NA
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (10):
  • [30] Moving vortices in noncommutative gauge theory
    Horváthy, PA
    Stichel, PC
    PHYSICS LETTERS B, 2004, 583 (3-4) : 353 - 356