Gauge Theory on Noncommutative Riemannian Principal Bundles

被引:0
|
作者
Branimir Ćaćić
Bram Mesland
机构
[1] University of New Brunswick,Department of Mathematics and Statistics
[2] Leiden University,Mathematical Institute
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a new, general approach to gauge theory on principal G-spectral triples, where G is a compact connected Lie group. We introduce a notion of vertical Riemannian geometry for G-C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras and prove that the resulting noncommutative orbitwise family of Kostant’s cubic Dirac operators defines a natural unbounded KKG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$KK^G$$\end{document}-cycle in the case of a principal G-action. Then, we introduce a notion of principal G-spectral triple and prove, in particular, that any such spectral triple admits a canonical factorisation in unbounded KKG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$KK^G$$\end{document}-theory with respect to such a cycle: up to a remainder, the total geometry is the twisting of the basic geometry by a noncommutative superconnection encoding the vertical geometry and underlying principal connection. Using these notions, we formulate an approach to gauge theory that explicitly generalises the classical case up to a groupoid cocycle and is compatible in general with this factorisation; in the unital case, it correctly yields a real affine space of noncommutative principal connections with affine gauge action. Our definitions cover all locally compact classical principal G-bundles and are compatible with θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-deformation; in particular, they cover the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-deformed quaternionic Hopf fibration C∞(Sθ7)↩C∞(Sθ4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty (S^7_\theta ) \hookleftarrow C^\infty (S^4_\theta )$$\end{document} as a noncommutative principal SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{SU}\,}}(2)$$\end{document}-bundle.
引用
收藏
页码:107 / 198
页数:91
相关论文
共 50 条
  • [31] Induced gauge theory on a noncommutative space
    Wohlgenannt, Michael
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (4-5): : 547 - 551
  • [32] Gauge theory solitons on the noncommutative cylinder
    Demidov, SV
    Dubovsky, SL
    Rubakov, VA
    Sibiryakov, SM
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (02) : 269 - 283
  • [33] Gauge theory on a discrete noncommutative space
    Hu, LZ
    Sant'Anna, AS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (04) : 635 - 647
  • [34] Unstable solitons in noncommutative gauge theory
    Aganagic, M
    Gopakumar, R
    Minwalla, S
    Strominger, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (04):
  • [35] Nonperturbative dynamics of noncommutative gauge theory
    Ambjorn, J
    Makeenko, YM
    Nishimura, J
    Szabo, RJ
    PHYSICS LETTERS B, 2000, 480 (3-4) : 399 - 408
  • [36] Canonical approach to noncommutative gauge theory
    Popovic, D. S.
    Sazdovic, B.
    PHYSICS LETTERS B, 2010, 683 (4-5) : 349 - 353
  • [37] Noncommutative gauge theory for Poisson manifolds
    Jurco, B
    Schupp, P
    Wess, J
    NUCLEAR PHYSICS B, 2000, 584 (03) : 784 - 794
  • [38] Noncommutative gauge theories in matrix theory
    Ho, PM
    Wu, YS
    PHYSICAL REVIEW D, 1998, 58 (06)
  • [39] The Gribov problem in noncommutative gauge theory
    Kurkov, Maxim
    Vitale, Patrizia
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (07)
  • [40] Noncommutative quantum mechanics as a gauge theory
    Bemfica, F. S.
    Girotti, H. O.
    PHYSICAL REVIEW D, 2009, 79 (12):