Noncommutative Principal Bundles Through Twist Deformation

被引:12
|
作者
Aschieri, Paolo [1 ,2 ]
Bieliavsky, Pierre [3 ]
Pagani, Chiara [4 ]
Schenkel, Alexander [5 ]
机构
[1] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Viale T Michel 11, I-15121 Alessandria, Italy
[2] Univ Piemonte Orientale, INFN Torino, Viale T Michel 11, I-15121 Alessandria, Italy
[3] Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2 Bte L7-01-02, B-1348 Louvain La Neuve, Belgium
[4] Georg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
[5] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
关键词
HOPF GALOIS EXTENSIONS; QUANTUM GROUPS; CONNECTIONS; ALGEBRAS; GEOMETRY; SPHERES; INSTANTONS; CATEGORIES; BIMODULES; MANIFOLDS;
D O I
10.1007/s00220-016-2765-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain noncommutative deformations of the base space as well. Combining the two twist deformations we obtain noncommutative principal bundles with both noncommutative fibers and base space. More in general, the natural isomorphisms proving the equivalence of a closed monoidal category of modules and its twist related one are used to obtain new Hopf-Galois extensions as twists of Hopf-Galois extensions. A sheaf approach is also considered, and examples presented.
引用
收藏
页码:287 / 344
页数:58
相关论文
共 50 条
  • [1] Noncommutative Principal Bundles Through Twist Deformation
    Paolo Aschieri
    Pierre Bieliavsky
    Chiara Pagani
    Alexander Schenkel
    Communications in Mathematical Physics, 2017, 352 : 287 - 344
  • [2] Noncommutative Principal Torus Bundles via Parametrised Strict Deformation Quantization
    Hannabuss, Keith C.
    Mathai, Varghese
    SUPERSTRINGS, GEOMETRY, TOPOLOGY, AND C(STAR)-ALGEBRAS, 2010, 81 : 133 - 147
  • [3] An Atiyah Sequence for Noncommutative Principal Bundles
    Schwieger, Kay
    Wagner, Stefan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [4] Geometry of noncommutative algebraic principal bundles
    Sharygin G.I.
    Journal of Mathematical Sciences, 2006, 134 (2) : 1911 - 1982
  • [5] A geometric approach to noncommutative principal torus bundles
    Wagner, Stefan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 : 1179 - 1222
  • [6] Gauge Theory on Noncommutative Riemannian Principal Bundles
    Branimir Ćaćić
    Bram Mesland
    Communications in Mathematical Physics, 2021, 388 : 107 - 198
  • [7] Lifting spectral triples to noncommutative principal bundles
    Schwieger, Kay
    Wagner, Stefan
    ADVANCES IN MATHEMATICS, 2022, 396
  • [8] Gauge Theory on Noncommutative Riemannian Principal Bundles
    Cacic, Branimir
    Mesland, Bram
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 107 - 198
  • [9] DIRAC OPERATORS ON NONCOMMUTATIVE PRINCIPAL CIRCLE BUNDLES
    Dabrowski, Ludwik
    Sitarz, Andrzej
    Zucca, Alessandro
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (01)
  • [10] Deformation quantization of principal bundles
    Aschieri, Paolo
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (08)