Supercongruences involving Lucas sequences

被引:0
|
作者
Zhi-Wei Sun
机构
[1] Nanjing University,Department of Mathematics
来源
关键词
-Adic congruence; Binomial coefficient; Lucas sequence; Primary 11A07; 11B65; Secondary 05A10; 11B39; 11B75;
D O I
暂无
中图分类号
学科分类号
摘要
For A,B∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B\in {\mathbb {Z}}$$\end{document}, the Lucas sequence un(A,B)(n=0,1,2,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(A,B)\ (n=0,1,2,\ldots )$$\end{document} are defined by u0(A,B)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0(A,B)=0$$\end{document}, u1(A,B)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_1(A,B)=1$$\end{document}, and un+1(A,B)=Aun(A,B)-Bun-1(A,B)(n=1,2,3,…).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{n+1}(A,B)=Au_n(A,B)-Bu_{n-1}(A,B)\ (n=1,2,3,\ldots ).$$\end{document} For any odd prime p and positive integer n, we establish the new result upn(A,B)-A2-4Bpun(A,B)pn∈Zp,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{u_{pn}(A,B)-\left( \frac{A^2-4B}{p}\right) u_n(A,B)}{pn}\in {\mathbb {Z}}_p, \end{aligned}$$\end{document}where ·p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{\cdot }{p}\right) $$\end{document} is the Legendre symbol and Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_p$$\end{document} is the ring of p-adic integers.
引用
收藏
页码:577 / 606
页数:29
相关论文
共 50 条
  • [21] Supercongruences involving products of two binomial coefficients
    Sun, Zhi-Wei
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 22 : 24 - 44
  • [22] Two Supercongruences Involving Truncated Hypergeometric Series
    Xia, Wei
    Wang, Chen
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (06)
  • [23] Supercongruences involving products of three binomial coefficients
    Sun, Zhi-Hong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [24] Supercongruences involving products of three binomial coefficients
    Zhi-Hong Sun
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [25] ON GENERALIZED LUCAS AND PELL-LUCAS SEQUENCES
    Tasci, Dursun
    Tas, Zisan Kusaksiz
    JOURNAL OF SCIENCE AND ARTS, 2019, (03): : 637 - 646
  • [26] Palindromes in Lucas Sequences
    Florian Luca
    Monatshefte für Mathematik, 2003, 138 : 209 - 223
  • [27] On the discriminator of Lucas sequences
    Faye, Bernadette
    Luca, Florian
    Moree, Pieter
    ANNALES MATHEMATIQUES DU QUEBEC, 2019, 43 (01): : 51 - 71
  • [28] On generalized Lucas sequences
    Wang, Qiang
    COMBINATORICS AND GRAPHS, 2010, 531 : 127 - 141
  • [29] Palindromes in Lucas sequences
    Luca, F
    MONATSHEFTE FUR MATHEMATIK, 2003, 138 (03): : 209 - 223
  • [30] Some identities involving generalized Genocchi polynomials and generalized Fibonacci-Lucas sequences
    Zhang, ZZ
    Jin, JY
    FIBONACCI QUARTERLY, 1998, 36 (04): : 329 - 334