On generalized Lucas sequences

被引:0
|
作者
Wang, Qiang [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
来源
COMBINATORICS AND GRAPHS | 2010年 / 531卷
关键词
PERMUTATION POLYNOMIALS; BINOMIALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notions of unsigned and signed generalized Lucas sequences and prove certain polynomial recurrence relations on their characteristic polynomials. We also characterize when these characteristic polynomials are irreducible polynomials over a finite field. Moreover, we obtain the explicit expressions of the remainders of Dickson polynomials of the first kind divided by characteristic polynomials of generalized Lucas sequences. Using these remainders, we show an application of generalized Lucas sequences in the characterization of a class of permutation polynomials and their compositional inverses.
引用
收藏
页码:127 / 141
页数:15
相关论文
共 50 条
  • [1] GENERALIZED LUCAS SEQUENCES
    HOGGATT, VE
    BICKNELLJOHNSON, M
    [J]. FIBONACCI QUARTERLY, 1977, 15 (02): : 131 - 139
  • [2] ON GENERALIZED LUCAS AND PELL-LUCAS SEQUENCES
    Tasci, Dursun
    Tas, Zisan Kusaksiz
    [J]. JOURNAL OF SCIENCE AND ARTS, 2019, (03): : 637 - 646
  • [3] COINCIDENCES IN GENERALIZED LUCAS SEQUENCES
    Bravo, Eric F.
    Bravo, Jhon J.
    Luca, Florian
    [J]. FIBONACCI QUARTERLY, 2014, 52 (04): : 296 - 306
  • [4] SOME GENERALIZED LUCAS SEQUENCES
    CLARKE, JH
    SHANNON, AG
    [J]. FIBONACCI QUARTERLY, 1985, 23 (02): : 120 - 125
  • [5] MERSENNE NUMBERS IN GENERALIZED LUCAS SEQUENCES
    Altassan, Alaa
    Alan, Murat
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2024, 77 (01): : 3 - 10
  • [6] A note on the divisibility of the generalized Lucas sequences
    Yuan, PZ
    [J]. FIBONACCI QUARTERLY, 2002, 40 (02): : 153 - 156
  • [7] THE SQUARE TERMS IN GENERALIZED LUCAS SEQUENCES
    Siar, Zafer
    Keskin, Refik
    [J]. MATHEMATIKA, 2014, 60 (01) : 85 - 100
  • [8] On pseudoprimes related to generalized Lucas sequences
    Dresel, LAG
    [J]. FIBONACCI QUARTERLY, 1997, 35 (01): : 35 - 42
  • [9] On square classes in generalized Lucas sequences
    Siar, Zafer
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) : 661 - 672
  • [10] Pseudoprimality related to the generalized Lucas sequences
    Andrica, Dorin
    Bagdasar, Ovidiu
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 : 528 - 542