Pseudoprimality related to the generalized Lucas sequences

被引:4
|
作者
Andrica, Dorin [1 ]
Bagdasar, Ovidiu [2 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[2] Univ Derby, Sch Comp & Engn, Kedleston Rd, Derby DE22 1GB, England
关键词
Generalized Lucas sequences; Legendre symbol; Jacobi symbol; Pseudoprimality; WIEFERICH; SEARCH;
D O I
10.1016/j.matcom.2021.03.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Some arithmetic properties and new pseudoprimality results concerning generalized Lucas sequences are presented. The findings are connected to the classical Fibonacci, Lucas, Pell, and Pell-Lucas pseudoprimality. During the process new integer sequences are found and some conjectures are formulated. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:528 / 542
页数:15
相关论文
共 50 条
  • [1] On Generalized Lucas Pseudoprimality of Level k
    Andrica, Dorin
    Bagdasar, Ovidiu
    [J]. MATHEMATICS, 2021, 9 (08)
  • [2] On pseudoprimes related to generalized Lucas sequences
    Dresel, LAG
    [J]. FIBONACCI QUARTERLY, 1997, 35 (01): : 35 - 42
  • [3] On generalized Lucas sequences
    Wang, Qiang
    [J]. COMBINATORICS AND GRAPHS, 2010, 531 : 127 - 141
  • [4] GENERALIZED LUCAS SEQUENCES
    HOGGATT, VE
    BICKNELLJOHNSON, M
    [J]. FIBONACCI QUARTERLY, 1977, 15 (02): : 131 - 139
  • [5] ON GENERALIZED LUCAS AND PELL-LUCAS SEQUENCES
    Tasci, Dursun
    Tas, Zisan Kusaksiz
    [J]. JOURNAL OF SCIENCE AND ARTS, 2019, (03): : 637 - 646
  • [6] On Inequalities Related to a Generalized Euler Totient Function and Lucas Sequences
    Pandey, Ashish Kumar
    Sharma, B. K.
    [J]. JOURNAL OF INTEGER SEQUENCES, 2023, 26 (08)
  • [7] The Congruence of Wolstenholme for Generalized Binomial Coefficients Related to Lucas Sequences
    Ballot, Christian
    [J]. JOURNAL OF INTEGER SEQUENCES, 2015, 18 (05)
  • [8] COINCIDENCES IN GENERALIZED LUCAS SEQUENCES
    Bravo, Eric F.
    Bravo, Jhon J.
    Luca, Florian
    [J]. FIBONACCI QUARTERLY, 2014, 52 (04): : 296 - 306
  • [9] SOME GENERALIZED LUCAS SEQUENCES
    CLARKE, JH
    SHANNON, AG
    [J]. FIBONACCI QUARTERLY, 1985, 23 (02): : 120 - 125
  • [10] MERSENNE NUMBERS IN GENERALIZED LUCAS SEQUENCES
    Altassan, Alaa
    Alan, Murat
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2024, 77 (01): : 3 - 10