Supercongruences involving Lucas sequences

被引:0
|
作者
Zhi-Wei Sun
机构
[1] Nanjing University,Department of Mathematics
来源
关键词
-Adic congruence; Binomial coefficient; Lucas sequence; Primary 11A07; 11B65; Secondary 05A10; 11B39; 11B75;
D O I
暂无
中图分类号
学科分类号
摘要
For A,B∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B\in {\mathbb {Z}}$$\end{document}, the Lucas sequence un(A,B)(n=0,1,2,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(A,B)\ (n=0,1,2,\ldots )$$\end{document} are defined by u0(A,B)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0(A,B)=0$$\end{document}, u1(A,B)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_1(A,B)=1$$\end{document}, and un+1(A,B)=Aun(A,B)-Bun-1(A,B)(n=1,2,3,…).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{n+1}(A,B)=Au_n(A,B)-Bu_{n-1}(A,B)\ (n=1,2,3,\ldots ).$$\end{document} For any odd prime p and positive integer n, we establish the new result upn(A,B)-A2-4Bpun(A,B)pn∈Zp,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{u_{pn}(A,B)-\left( \frac{A^2-4B}{p}\right) u_n(A,B)}{pn}\in {\mathbb {Z}}_p, \end{aligned}$$\end{document}where ·p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{\cdot }{p}\right) $$\end{document} is the Legendre symbol and Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_p$$\end{document} is the ring of p-adic integers.
引用
收藏
页码:577 / 606
页数:29
相关论文
共 50 条
  • [31] SUMS, PRODUCTS AND IDENTITIES INVOLVING k-FIBONACCI AND k-LUCAS SEQUENCES
    Catarino, P.
    Vasco, P.
    Borges, A.
    Campos, H.
    Aires, A. P.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 32 (01): : 63 - 77
  • [32] THE GCD SEQUENCES OF THE ALTERED LUCAS SEQUENCES
    Koken, Fikri
    ANNALES MATHEMATICAE SILESIANAE, 2020, 34 (02) : 222 - 240
  • [33] LUCAS SEQUENCES AND REPDIGITS
    Hashim, Hayder Raheem
    Tengely, Szabolcs
    MATHEMATICA BOHEMICA, 2022, 147 (03): : 301 - 318
  • [34] Divisors of Lucas sequences
    Somer, L
    FIBONACCI QUARTERLY, 1997, 35 (04): : 376 - 376
  • [35] On squares in Lucas sequences
    Bremner, A.
    Tzanakis, N.
    JOURNAL OF NUMBER THEORY, 2007, 124 (02) : 511 - 520
  • [36] On the discriminator of Lucas sequences
    Bernadette Faye
    Florian Luca
    Pieter Moree
    Annales mathématiques du Québec, 2019, 43 : 51 - 71
  • [37] GENERALIZED LUCAS SEQUENCES
    HOGGATT, VE
    BICKNELLJOHNSON, M
    FIBONACCI QUARTERLY, 1977, 15 (02): : 131 - 139
  • [38] A set of Lucas sequences
    Atanassov, Krassimir T.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (02) : 1 - 5
  • [39] ON PRIMES IN LUCAS SEQUENCES
    Somer, Lawrence
    Krizek, Michal
    FIBONACCI QUARTERLY, 2015, 53 (01): : 2 - 23
  • [40] Supercongruences involving Domb numbers and binary quadratic forms
    Mao, Guo-Shuai
    Schlosser, Michael J.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)