Rescaled contact processes converge to super-Brownian motion in two or more dimensions

被引:0
|
作者
Richard Durrett
Edwin A. Perkins
机构
[1] Department of Mathematics and ORIE,
[2] 278 Rhodes Hall,undefined
[3] Cornell University,undefined
[4] Ithaca,undefined
[5] NY 14853,undefined
[6] USA (e-mail: rtd1@cornell.edu),undefined
[7] Department of Mathematics,undefined
[8] 1984 Mathematics Rd.,undefined
[9] University of British Columbia,undefined
[10] Vancouver,undefined
[11] B.C. V6T 1Z2,undefined
[12] Canada (e-mail: perkins@math.ubc.ca),undefined
来源
关键词
Mathematics Subject Classification (1991): Primary 60K35, 60G57; Secondary: 60F05, 60J80;
D O I
暂无
中图分类号
学科分类号
摘要
We show that in dimensions two or more a sequence of long range contact processes suitably rescaled in space and time converges to a super-Brownian motion with drift. As a consequence of this result we can improve the results of Bramson, Durrett, and Swindle (1989) by replacing their order of magnitude estimates of how close the critical value is to 1 with sharp asymptotics.
引用
收藏
页码:309 / 399
页数:90
相关论文
共 50 条